ZHAN Zongqian, LAI Binghua, WAN Jie, LI Lou. Vegetation Detection of Close-Range Images Based on Texture Features and Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 665-668.
Citation: ZHAN Zongqian, LAI Binghua, WAN Jie, LI Lou. Vegetation Detection of Close-Range Images Based on Texture Features and Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 665-668.

Vegetation Detection of Close-Range Images Based on Texture Features and Naive Bayes Classifier

Funds: 国家自然科学基金资助项目(41101418,41071292); 国土环境与灾害监测国家测绘地理信息局重点实验室资助项目(LEDM2009B03); 中央高校基本科研业务费专项资金资助项目(3101047)
More Information
  • Received Date: January 01, 2013
  • Revised Date: January 01, 2013
  • Published Date: June 04, 2013
  • Considering of the problems of serious effects caused by vegetation on automatic landslide monitoring in close-range photogrammetry,we present a method of detecting vegetation regions in landslide images based on texture features and naive Bayes classifier.Some meaningful discussions and analysis have been done mainly for the effectiveness of this algorithm,image contrast stretching and the generality problem of samples training.Comparing with another detection method based on visual cognition features,we prove the availability and the validity of this method.The experimental results show that the vegetation detection method can almost detect the vegetation regions from close-range images and the result is satisfying.
  • [1]
    张倩黄昕,张良培,. 多尺度同质区域提取的高分辨率遥感影像分类研究[J]. 武汉大学学报(信息科学版). 2011(01)[2] 王结臣陈焱明,. 一种栅格辅助的平面点集最小凸包生成算法[J]. 武汉大学学报(信息科学版). 2010(04)[3] 闫利聂倩,胡文元,崔晨风,. 基于对象级的ADS40遥感影像分类研究[J]. 武汉大学学报(信息科学版). 2009(02)[4] 刘广忠黄琳娜,. 基于二叉树的散乱点集快速凸包算法[J]. 测绘科学. 2008(04)[5] 洪继光. 灰度-梯度共生矩阵纹理分析方法[J]. 自动化学报. 1984(01)[6] 陈忠,. 高分辨率遥感图像分类技术研究[D]. 中国科学院研究生院(遥感应用研究所) 2006[7] 周龙,. 基于朴素贝叶斯的分类方法研究[D]. 安徽大学 2006
  • Related Articles

    [1]LI Gaixiao, LÜ Cheng, PENG Rencan, DONG Jian. A Rapid Path Planning Algorithm Based on the Bilateral Convex-Hull Expanding Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 58-64. DOI: 10.13203/j.whugis20180469
    [2]ZENG Xiaoniu, LI Xihai, LIU Jihao, NIU Chao, HOU Weijun. Simultaneous Interpolation and Denoising Method for Airborne Gravity Data Based on Improved Projection onto Convex Sets Theory[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1555-1562. DOI: 10.13203/j.whugis20180470
    [3]HUANG Yi, WANG Yunjia, HU Zhaoling, LI Chen. Center's Service Area Considering Topology[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 105-108.
    [4]ZHANG Zhijun, LI Lin, YU Zhonghai, YING Shen. Auto-Labeling of Hash Anea Features[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 739-742.
    [5]WANG Jiechen, CHEN Yanming. A Gird-aided Algorithm for Determining the Minimum Convex Hull of Planar Points Set[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 403-406.
    [6]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [7]SU Shu, LI Lin, WANG Cheng. Analysis and Calculation of Map Chinese Labeling Quality Function[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 432-435.
    [8]YU Xin, ZHENG Zhaobao, TANG Ling, YE Zhiwei. Aerial Image Texture Classification Based on Naive Bayes Classifiers[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 108-111.
    [9]HU Peng GENG, Xiepeng, CAO Feng. Morpha Transformation and Universal Convex Hull Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 1003-1007.
    [10]Li Qingquan, Li Deren. An Algorithm for Three Dimensional Convex Hull Creation of a Set of Spatial Points[J]. Geomatics and Information Science of Wuhan University, 1998, 23(2): 121-123,144.

Catalog

    Article views (1166) PDF downloads (570) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return