PU Hao, SONG Zhanfeng. View-dependent Simplification Algorithm of Terrain Model Based on Visibility Preprocesssing[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 636-639.
Citation: PU Hao, SONG Zhanfeng. View-dependent Simplification Algorithm of Terrain Model Based on Visibility Preprocesssing[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 636-639.

View-dependent Simplification Algorithm of Terrain Model Based on Visibility Preprocesssing

Funds: 铁道部科技研究开发计划资助项目(铁建电(2001)11号)
More Information
  • Received Date: April 28, 2005
  • Revised Date: April 28, 2005
  • Published Date: July 04, 2005
  • This paper puts forward a vertex removal simplification algorithm based on visibility preprocessing. To deal with huge amounts of terrain data set,The space index system with high efficiency is created and applied to accelerate the visibility preprocessing including view-frustum culling,back-face culling and hiding-face culling. The model which had been preprocessed is simplified further by the vertex removal algorithm based on curvature. The experiments show that the visibility preprocess can accelerate the rendering to a great extent and the rendering velocity is independent of the model complexity.
  • Related Articles

    [1]MAO Weihua, LI Wanqiu, LI Aiqin, JIANG Tao, JI Yuanming, LIU Li, WANG Wei. Monitoring of Crustal Vertical Deformation and Gravity Change Caused by Environmental Load in Wenzhou-Lishui Region Using CORS Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1508-1516. DOI: 10.13203/j.whugis20190004
    [2]WANG Wei, ZHANG Chuanyin, YANG Qiang, ZOU Zhengbo, ZHU Jinjie, KANG Shengjun. Impact of Atmospheric Pressure Loading on Regional Crustal Deformation and Gravity Change[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1302-1308. DOI: 10.13203/j.whugis20160392
    [3]ZHANG Chuanyin, WANG Wei, GAN Weijun, LI Hui, ZHANG Qingtao. Monitoring Temporal and Spatial Changes of Crustal Deformation and Gravity Field Caused by Environmental Load in the Three Gorges Reservoir Region Based on CORS Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1287-1294. DOI: 10.13203/j.whugis20160419
    [4]ZHOU Dongxu, ZHOU Xinghua, ZHANG Huayi, WANG Zhaoyang, TANG Qiuhua. Analysis of the Vertical Deformation of China Coastal Tide Stations Using GPS Continuous Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 516-522. DOI: 10.13203/j.whugis20140714
    [5]LIU Jingnan, ZHANG Huayi, LIU Yanxiong, CHEN Wu, ZHOU Xinghua. Progress of Ocean Tide Loading Inversion Based on GNSS[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 9-14. DOI: 10.13203/j.whugis20150621
    [6]ZHANG Jie, LI Fei, LOU Yidong, HAO Weifeng. Ocean Tide Loading Effect on GPS Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1400-1404.
    [7]ZHANG Shiyu, ZHONG Min. Vertical Crustal Displacements in China Due to Surface Fluid Changes[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 458-461.
    [8]HUANG Yong, LI Yingbing, GUO Junyi. Green's Functions of Atmosphere Loading:the Effect of Pressure[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 577-580.
    [9]LI Yingbing, HUANG Yong, GUO Junyi, XU Shaoquan. Green's Functions of Atmospheric Gravitation Loading[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 435-439.
    [10]LUO Shaocong. The Model of Evaluating Precisions for Atmospheric Loading Respond Corrections[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 217-221.

Catalog

    Article views (928) PDF downloads (355) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return