LIU Nan, SHU Ning. Texture Characteristic Coding Based on Multispectral Image[J]. Geomatics and Information Science of Wuhan University, 2005, 30(1): 15-18.
Citation: LIU Nan, SHU Ning. Texture Characteristic Coding Based on Multispectral Image[J]. Geomatics and Information Science of Wuhan University, 2005, 30(1): 15-18.

Texture Characteristic Coding Based on Multispectral Image

Funds: 国家自然科学基金资助项目 (4 0 3 710 79)。
More Information
  • Received Date: October 12, 2004
  • Revised Date: October 12, 2004
  • Published Date: January 04, 2005
  • On the basis of the analysis of the methods for single band image texture, this paper presents the concept of multispectral texture applying the relativity analysis of local area and the variant characteristics of multi\|dimensional coding to represent the texture characteristics of the different objects. The experiment result has proved that this method is useful for the extraction of the spatial texture with spectral characteristics.
  • Related Articles

    [1]ZHAO Liqian, HU Xiaogong, ZHOU Shanshi, TANG Chengpan, YANG Yufei. Determination of BDS Monitoring Stations Coordinates and Its Influence on Orbit Determination Accuracy[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1501-1507. DOI: 10.13203/j.whugis20180468
    [2]LIU Wenjian, XU Rongpan, LI Min, TANG Weiming, ZOU Xuan, SHI Chuang. Establishment and Accuracy Analysis for Guangdong Coordinate Frame Based on BDS[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 874-878. DOI: 10.13203/j.whugis20160153
    [3]ZHOU Yongjun, DENG Caihua. Weighted and Unweighted Total Least Square Methods and Applications to Heteroscedastic 3D Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 976-979.
    [4]LOU Liangsheng, LIU Siwei, ZHOU Yu. Accuracy Analysis of Airborne InSAR System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 63-67.
    [5]CHEN Chuanfa, YUE Tianxiang, ZHANG Zhaojie. An Algorithm for Solving High Accuracy Surface Modeling[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 365-368.
    [6]LIU Guolin, HAO Xiaoguang, XUE Huaiping, DU Zhixing. Related Analysis of Effecting Factors of Height Measurement Accuracy of InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 55-58.
    [7]ZHANG Chijun. Two Methods for Determining the Orthometric Height with High Accuracy[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 432-434,443.
    [8]Yuan Xiuxiao. Theoretical Accuracy for GPS-Supported Bundle Adjustment[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 394-398.
    [9]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
    [10]Xu Gencai. The Analysis of Planimetric Accuracy for Topographic Map Series at Medium and Small Scales[J]. Geomatics and Information Science of Wuhan University, 1989, 14(2): 59-68.

Catalog

    Article views (933) PDF downloads (494) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return