LU Tieding, ZHOU Shijian. An Iterative Algorithm for Total Least Squares Estimation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1351-1354.
Citation: LU Tieding, ZHOU Shijian. An Iterative Algorithm for Total Least Squares Estimation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1351-1354.

An Iterative Algorithm for Total Least Squares Estimation

Funds: 国家自然科学基金资助项目(40874010);江西省自然科学基金资助项目(2007GZC0474,2008GQC0001,2008GZS0041);武汉大学地球空间环境与大地测量教育部重点实验室开放研究基金资助项目(080104);现代工程测量国家测绘局重点实验室开放研究基金资助项目(TJES0802);数字国土江西省重点实验室开放研究基金资助项目(DLLJ200506)
More Information
  • Received Date: September 14, 2010
  • Revised Date: September 14, 2010
  • Published Date: November 04, 2010
  • Total least squares(TLS) approach aims at estimating a matrix of parameters from a linear model when there are errors in both the observation vector L and the data matrix A.The authors derived an iterative algorithm to solve the TLS problem by using the principle of indirect adjustment.Compared with the method based on singular-value decomposition,the iterative algorithm coincides with the SVD algorithm.The calculated example has proved that the iterative algorithm is validity and rationality.
  • Related Articles

    [1]ZHAO Liqian, HU Xiaogong, ZHOU Shanshi, TANG Chengpan, YANG Yufei. Determination of BDS Monitoring Stations Coordinates and Its Influence on Orbit Determination Accuracy[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1501-1507. DOI: 10.13203/j.whugis20180468
    [2]LIU Wenjian, XU Rongpan, LI Min, TANG Weiming, ZOU Xuan, SHI Chuang. Establishment and Accuracy Analysis for Guangdong Coordinate Frame Based on BDS[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 874-878. DOI: 10.13203/j.whugis20160153
    [3]ZHOU Yongjun, DENG Caihua. Weighted and Unweighted Total Least Square Methods and Applications to Heteroscedastic 3D Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 976-979.
    [4]LOU Liangsheng, LIU Siwei, ZHOU Yu. Accuracy Analysis of Airborne InSAR System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 63-67.
    [5]CHEN Chuanfa, YUE Tianxiang, ZHANG Zhaojie. An Algorithm for Solving High Accuracy Surface Modeling[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 365-368.
    [6]LIU Guolin, HAO Xiaoguang, XUE Huaiping, DU Zhixing. Related Analysis of Effecting Factors of Height Measurement Accuracy of InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 55-58.
    [7]ZHANG Chijun. Two Methods for Determining the Orthometric Height with High Accuracy[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 432-434,443.
    [8]Yuan Xiuxiao. Theoretical Accuracy for GPS-Supported Bundle Adjustment[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 394-398.
    [9]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
    [10]Xu Gencai. The Analysis of Planimetric Accuracy for Topographic Map Series at Medium and Small Scales[J]. Geomatics and Information Science of Wuhan University, 1989, 14(2): 59-68.

Catalog

    Article views (1735) PDF downloads (715) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return