LI Haifeng, ZHU Qing, YANG Xiaoxia, OUYANG Yiqiang. A Non-Cooperative Game Model for QoS-Aware Optimal Composition of Remote Sensing Information Services for Multi-task[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 967-970.
Citation: LI Haifeng, ZHU Qing, YANG Xiaoxia, OUYANG Yiqiang. A Non-Cooperative Game Model for QoS-Aware Optimal Composition of Remote Sensing Information Services for Multi-task[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 967-970.

A Non-Cooperative Game Model for QoS-Aware Optimal Composition of Remote Sensing Information Services for Multi-task

Funds: 国家创新研究群体科学基金资助项目(40721001)
More Information
  • Received Date: June 14, 2010
  • Revised Date: June 14, 2010
  • Published Date: August 04, 2010
  • A non-cooperative game model for QoS-aware optimal composition for multi-task is proposed to analyze services optimal composition strategies of tasks in competition situation,the competition relationships among concurrency tasks are described,and defines the best reply functions for QoS-aware optimal composition of remote sensing information services.Theoretical analysis shows that the proposed non-cooperative game model can reduce the conflicts among concurrency tasks effectively and maximize expectation utility of all tasks.
  • Related Articles

    [1]PAN Wenchao, HAO Jinming, ZHANG Hui, YANG Yong. Correlation of the Haze and GPS Troposphere Zenith Path Delay[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 609-615. DOI: 10.13203/j.whugis20140693
    [2]YAO Yibin, GUO Jianjian, ZHANG Bao, HU Yufeng. A Global Empirical Model of the Conversion Factor Between Zenith Wet Delay and Precipitable Water Vapor[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 45-51. DOI: 10.13203/j.whugis20140585
    [3]ZOU Youfeng, WANG Yong, WEN Debao, SU Youpo. GPS Precipitable Water Vapor of Different Climate Types[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 573-576.
    [4]XU Chaoqian, SHI Junbo, GUO Jiming, XU Xiaohua. Analysis of Combining Ground-based GPS Network and Space-based COSMIC Occultation Observation for Precipitable Water Vapor Application[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 467-470.
    [5]ZHU Qinglin, ZHAO Zhenwei, WU Zhensen. Precision Improvemen of Tropospheric Zenith Path Delay Estimation by Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1098-1101.
    [6]YE Shirong, ZHANG Shuangcheng, LIU Jingnan. Precision Analysis of Precise Point Positioning Based Tropospheric Delay Estimation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 788-791.
    [7]WANG Guiwen, WANG Zemin, YANG Jian. Ground-Based GPS Nearly Real-Time Inversion of Precipitable Water Vapor over Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 761-763.
    [8]YIN Haitao, HUANG Dingfa, XIONG Yongliang, WANG Guiwen. New Model for Tropospheric Delay Estimation of GPS Signal[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 454-457.
    [9]LI Guoping, HUANG Dingfa, LIU Biquan. Experiment on Driving Precipitable Water Vapor from Ground-Based GPS Network in Chengdu Plain[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1086-1089.
    [10]QU Jianguang, LIU Jiyu, HAN Zhongyuan. Research on the Calculating Directly Water Vapor Value Using Zenith Tropospheric Delay Data[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 625-628.

Catalog

    Article views (1996) PDF downloads (383) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return