DING Mingtao, CHEN Haojie, LI Zhenhong, LIU Zhenjiang. Analysis of Surface Deformations on the Basis of Optical Flow Field Models from Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1314-1329. DOI: 10.13203/j.whugis20240071
Citation: DING Mingtao, CHEN Haojie, LI Zhenhong, LIU Zhenjiang. Analysis of Surface Deformations on the Basis of Optical Flow Field Models from Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1314-1329. DOI: 10.13203/j.whugis20240071

Analysis of Surface Deformations on the Basis of Optical Flow Field Models from Optical Remote Sensing Images

More Information
  • Received Date: February 29, 2024
  • Available Online: May 30, 2024
  • Objectives 

    Pixel offset tracking (POT) for optical remote sensing imagery is widely used to invert coseismic deformation fields and monitor landslides. Traditional pixel offset tracking method estimates the displacement of the central pixel by searching for the matching window with the highest correlation, which is computationally inefficient and suffers from inaccurate deformation boundary extraction due to the decoherence effects in the region with dynamical deformation. We introduce the optical flow field model commonly used in computer vision to the pixel offset tracking problem to obtain accurate surface deformation efficiently.

    Methods 

    The optical flow field method applicable to optical remote sensing images and the improved inversion algorithm for the time series analysis are proposed to inverse the surface deformation. Experiments on the simulated coseismic deformation fields in Tajikistan are detailed to assess the feasibility and the minimum detectable deformation of the optical flow field method. The advantages of the proposed method over computational cost and deformation boundary extraction accuracy are illustrated by the co-seismic deformation field of the California earthquake and the displacement of the Baige landslide. Furthermore, the performance on estimating large gradient deformation and the robustness of the improved time series inversion algorithm are discussed by analyzing the time series deformation of the Baige landslide.

    Results 

    The results show that compared with the traditional window correlation matching method, the optical flow field method has an offset tracking accuracy of 0.032 pixel, which improves the computational efficiency by about 20 times, and the accuracy of the deformation zone is improved by 25.9%. The time series weighted inversion algorithm reduces the uncertainties in the estimation of east-west and north-south displacements of optical remote sensing images by 16.2% and 12.4%, respectively.

    Conclusions 

    The proposed method alleviates the pixel offset tracking problem in the boundary region with large gradient deformation.

  • [1]
    Lacroix P, Handwerger A L, Bièvre G. Life and Death of Slow-Moving Landslides[J]. Nature Reviews Earth & Environment, 2020, 1(8): 404-419.
    [2]
    He Y, Zhao Z, Yang W, et al. A Unified Network of Information Considering Superimposed Landslide Factors Sequence and Pixel Spatial Neighbourhood for Landslide Susceptibility Mapping[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102508.
    [3]
    Song C, Yu C, Li Z, et al.Triggering and Recovery of Earthquake Accelerated Landslides in Central Italy Revealed by Satellite Radar Observations[J]. Nature Communications, 2022, 13(1): 7278.
    [4]
    李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897.

    Li Zhenhong, Han Bingquan, Liu Zhenjiang, et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan Qinghai Earthquakes Constrained by InSAR Observations [J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897.
    [5]
    He Y, Zhao Z, Zhu Q, et al. An Integrated Neural Network Method for Landslide Susceptibility Assessment Based on Time-Series InSAR Deformation Dynamic Features[J]. International Journal of Digital Earth, 2024, 17(1): 2295408.
    [6]
    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7): 967-979.

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979.
    [7]
    王乐洋, 邹阿健. 结合SAR和光学数据检索凯库拉Mw 7.8地震三维形变[J]. 武汉大学学报(信息科学版), 2024, 49(2): 303-312.

    Wang Leyang, Zou Ajian. Retrieving 3D Coseismic Deformation of 2016 Mw 7.8 Kaikoura Earthquake Using SAR and Optical Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 303-312.
    [8]
    Provost F,Michéa D,Malet J P,et al.Terrain Deformation Measurements from Optical Satellite Imagery: The MPIC-OPT Processing Services for Geohazards Monitoring[J]. Remote Sensing of Environment, 2022, 274: 112949.
    [9]
    李振洪, 朱武, 余琛, 等. 影像大地测量学发展现状与趋势[J]. 测绘学报, 2023, 52(11): 1805-1834.

    Li Zhenhong, Zhu Wu, Yu Chen, et al. Development Status and Trends of Imaging Geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1805-1834.
    [10]
    Leprince S, Ayoub F, Klinger Y, et al. Co-Registration of Optically Sensed Images and Correlation (COSI-Corr): An Operational Methodology for Ground Deformation Measurements[C]//IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007.
    [11]
    Rosu A M, Pierrot-Deseilligny M, Delorme A, et al. Measurement of Ground Dsplacement from Optical Satellite Image Correlation Using the Free Open-Source Software MicMac[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100: 48-59.
    [12]
    Cournet M, Giros A, Dumas L, et al. 2D Sub-Pixel Disparity Measurement Using QPEC/Medicis[J]. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI(B1): 291-298.
    [13]
    Lacroix P, Araujo G, Hollingsworth J, et al. Self-entrainment Motion of a Slow-Moving Landslide Inferred From Landsat-8 Time Series[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(5): 1201-1216.
    [14]
    熊俊麟, 范宣梅, 窦向阳, 等. 藏东南然乌湖流域雅弄冰川流速季节性变化[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1579-1588.

    Xiong Junlin, Fan Xuanmei, Dou Xiangyang, et al. Seasonal Variation of Yalong Glacier’s Velocity in Ranwu Lake Basin, Southeast Tibetan Plateau[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1579-1588.
    [15]
    Ding C, Zhang L, Liao M, et al. Quantifying the Spatiotemporal Patterns of Dune Migration Near Minqin Oasis in Northwestern China with Time Series of Landsat-8 and Sentinel-2 Observations[J]. Remote Sensing of Environment,2020,236: 111498.
    [16]
    贺礼家, 冯光财, 冯志雄, 等. 哨兵-2号光学影像地表形变监测:以2016年Mw 7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3): 339-351.

    He Lijia, Feng Guangcai, Feng Zhixiong, et al. Coseismic Displacements of 2016 Mw 7.8 Kaikoura, New Zealand Earthquake, Using Sentinel-2 Optical Images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3): 339-351.
    [17]
    Cai J, Wang C, Mao X, et al. An Adaptive Offset Tracking Method with SAR Images for Landslide Displacement Monitoring[J]. Remote Sensing, 2017, 9(8): 830.
    [18]
    Li M, Zhang L, Dong J, et al. Characterization of Pre- and Post-Failure Displacements of the Huangnibazi Landslide in Li County with Multi-source Satellite Observations[J]. Engineering Geology, 2019, 257: 105140.
    [19]
    Jia H, Wang Y, Ge D, et al. Improved Offset Tracking for Predisaster Deformation Monitoring of the 2018 Jinsha River Landslide (Tibet, China)[J]. Remote Sensing of Environment,2020,247: 111899.
    [20]
    Horn B K P, Schunck B G. Determining Optical Flow[J]. Artificial Intelligence,1981,17: 185-203.
    [21]
    Brigot G,Colin-Koeniguer E,Plyer A,et al. Adaptation and Evaluation of an Optical Flow Method Applied to Coregistration of Forest Remote Sensing Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 2923-2939.
    [22]
    Fu Y, Zhang B, Liu G, et al. An Optical Flow SBAS Technique for Glacier Surface Velocity Extraction Using SAR Images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
    [23]
    Chanut M A, Gasc-Barbier M, Dubois L, et al. Automatic Identification of Continuous or Non-continuous Evolution of Landslides and Quantification of Deformations[J]. Landslides, 2021, 18(9): 3101-3118.
    [24]
    Hermle D, Gaeta M, Krautblatter M, et al. Performance Testing of Optical Flow Time Series Analyses Based on a Fast, High-Alpine Landslide[J]. Remote Sensing, 2022, 14(3): 455.
    [25]
    Drusch M, Del Bello U, Carlier S, et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services[J]. Remote Sensing of Environment, 2012, 120: 25-36.
    [26]
    Xu Y, Lu Z, Schulz W H, et al. Twelve-Year Dynamics and Rainfall Thresholds for Alternating Creep and Rapid Movement of the Hooskanaden Landslide from Integrating InSAR, Pixel Offset Tracking, and Borehole and Hydrological Measurements[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(10), DOI:10.1029/2020JF005640. doi: 10.1029/2020JF005640
    [27]
    Tang C H, Lin Y N, Tung H, et al. Nearby Fault Interaction Within the Double-Vergence Suture in Eastern Taiwan During the 2022 Chihshang Earthquake Sequence[J]. Communications Earth & Environment, 2023, 4(1): 333.
    [28]
    Kirst C, Skriabine S, Vieites-Prado A, et al. Mapping the Fine-Scale Organization and Plasticity of the Brain Vasculature[J]. Cell, 2020, 180(4): 780-795.
    [29]
    Ali E, Xu W, Ding X. Improved Optical Image Matching Time Series Inversion Approach for Monitoring Dune Migration in North Sinai Sand Sea: Algorithm Procedure, Application, and Validation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 106-124.
    [30]
    Bontemps N,Lacroix P, Doin M P. Inversion of Deformation Fields Time-Series from Optical Images, and Application to the Long Term Kinematics of Slow-Moving Landslides in Peru[J]. Remote Sensing of Environment, 2018, 210: 144-158.
    [31]
    Yang W, Liu L, Shi P. Detecting Precursors of an Imminent Landslide Along the Jinsha River[J].Natural Hazards and Earth System Sciences, 2020, 20(11): 3215-3224.
    [32]
    Okada Y. Internal Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
    [33]
    Zhang Y, Zheng X, Chen Q, et al. Automatic Inversion of Rupture Processes of the Foreshock and Mainshock and Correlation of the Seismicity During the 2019 Ridgecrest Earthquake Sequence[J]. Seismological Research Letters, 2020, 91(3): 1556-1566.
    [34]
    Chen K, Avouac J P, Aati S, et al. Cascading and Pulse-Like Ruptures During the 2019 Ridgecrest Earthquakes in the Eastern California Shear Zone[J]. Nature Communications, 2020, 11(1): 22.
    [35]
    马振宁, 钱荣毅, Catchings R, 等. 美国南加州Ridgecrest Mw 6.4~Mw 7.1地震地表破裂几何学及运动学特征[J]. 地球物理学报, 2021, 64(4): 1206-1214.

    Ma Zhenning, Qian Rongyi, Catchings R, et al. Geometric and Kinematic Characteristics of Surface Ruptures of Ridgecrest Mw 6.4—Mw 7.1 Earthquake in Southern California[J]. Chinese Journal of Geophysics, 2021, 64(4): 1206-1214.
    [36]
    Fan X, Xu Q, Alonso-Rodriguez A, et al. Successive Landsliding and Damming of the Jinsha River in Eastern Tibet, China: Prime Investigation, Early Warning, and Emergency Response[J]. Landslides, 2019, 16(5): 1003-1020.
    [37]
    许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报,2018,26(6): 1534-1551.

    Xu Qiang,Zhang Guang,Li Weile,et al.Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6): 1534-1551.
    [38]
    Li M, Zhang L, Ding C, et al. Retrieval of Historical Surface Displacements of the Baige Landslide from Time-Series SAR Observations for Retrospective Analysis of the Collapse Event[J]. Remote Sensing of Environment, 2020, 240: 111695.
    [39]
    柳林, 宋豪峰, 杜亚男, 等. 联合哨兵2号和Landsat 8估计白格滑坡时序偏移量[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1461-1470.

    Liu Lin, Song Haofeng, Du Yanan, et al. Time⁃Series Offset Tracking of the Baige Landslide Based on Sentinel⁃2 and Landsat-8[J]. Geomatics and Information Science of Wuhan University,2021,46(10):1461-1470.
    [40]
    Yang W. Selecting the Best Image Pairs to Measure Slope Deformation[J].Sensors,2020,20(17): 4721.
  • Related Articles

    [1]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [2]XU Yaming, SUN Fuyu, ZHANG Peng, WANG Jinling. A Pseudolite Positioning Approach Utilizing Carrier Phase Difference[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1445-1450. DOI: 10.13203/j.whugis20170033
    [3]ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045
    [4]ZHANG Tisheng, ZHENG Jiansheng, ZHANG Hongping, YAN Kunlun. Oscillator Effects on Carrier-Phase Measurements in GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1413-1416.
    [5]LIU Ning, XIONG Yongliang, XU Shaoguang. Detection and Repair of Cycle Slips Using Improved TurboEdit Algorithm and Chebyshev Polynomial Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1500-1503.
    [6]WENG Yongzhi, WU Jie. Time-differenced Carrier Phase/SINS Tight Integration Algorithm in the High-precision Navigation for High Earth Orbit Spacecraft[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1195-1199.
    [7]WU Jizhong, SHI Chuang, FANG Rongxin. Improving the Single Station Data Cycle Slip Detection Approach TurboEdit[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 29-33.
    [8]WANG Aisheng, OU Jikun. Detecting and Repairing Cycle Slips in GPS Single Frequency Carrier Phase Using Lowpass[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1079-1081.
    [9]WANG Fuhong, LIU Jiyu. A New Algorithm Detecting Cycle Slips in Satellite-Borne GPS Carrier Phase Measurements for Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 772-774.
    [10]Han Shaowei. Equivalence of the Methods for GPS Data Processing with Carrier Phase Observations[J]. Geomatics and Information Science of Wuhan University, 1991, 16(1): 68-77.
  • Cited by

    Periodical cited type(12)

    1. 董可,冯威,董兴干,黄丁发. 高频GNSS数据MGF周跳解算方法的质量控制. 武汉大学学报(信息科学版). 2023(02): 268-276 .
    2. 姜毅,石绍杰. 基于载噪比加权的BDS周跳探测方法研究. 大地测量与地球动力学. 2023(06): 575-580 .
    3. 范晓曼,黄劲松. 一种基于卡尔曼滤波的RTK定位周跳探测方法. 测绘地理信息. 2023(04): 65-69 .
    4. 朱云鹏,周松光. 一种GPS的双频周跳探测算法. 河南科技. 2022(03): 10-13 .
    5. 吕震,王振杰,单瑞,刘金萍. Galileo四频数据周跳探测与修复方法. 导航定位学报. 2022(03): 69-77 .
    6. 韩子彬,白燕,张峰,郭燕铭,卢晓春. 星地双向时差测量系统周跳探测与修复算法. 全球定位系统. 2022(03): 65-72 .
    7. 刘国超,谢小摧,周志远,曾令响. 双频载波相位求差法在BDS周跳探测与修复中的应用. 工程勘察. 2021(01): 54-57 .
    8. 蔡成林,沈文波,曾武陵,于洪刚,谢小平. 多普勒积分重构与STPIR联合周跳探测与修复. 测绘学报. 2021(02): 160-168 .
    9. 张晨晰,党亚民,薛树强,张龙平. 一种基于TurboEdit的BDS周跳探测改进方法. 测绘科学. 2021(06): 47-52+64 .
    10. 祝会忠,王煊,王楚扬,徐爱功,朱广彬. BDS中长距离基线高精度静态定位方法与实验. 测绘科学. 2020(03): 8-14 .
    11. 沈朋礼,成芳,肖厦,肖秋龙,卢晓春. 北斗三号卫星的周跳探测与修复算法. 测绘科学. 2019(11): 9-14+21 .
    12. 曲家庆,林加涛. 高精度双频卫星导航接收机相对定位方法. 制导与引信. 2018(02): 46-49 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return