LIU Bingshi, ZOU Xiancai. Analysis of Sea and Land Water Storage Changes in the Western Pacific Under the Influence of ENSO[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1296-1303. DOI: 10.13203/j.whugis20170392
Citation: LIU Bingshi, ZOU Xiancai. Analysis of Sea and Land Water Storage Changes in the Western Pacific Under the Influence of ENSO[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1296-1303. DOI: 10.13203/j.whugis20170392

Analysis of Sea and Land Water Storage Changes in the Western Pacific Under the Influence of ENSO

Funds: 

The National Natural Science Foundation of China 41874021

Civil Aerospace "13th Five-Year" Preliminary Research Project 

Gravity Gradient Measurement Satellite System Research Project 

More Information
  • Author Bio:

    LIU Bingshi, PhD candidate, specializes in satellite geodesy. E-mail: bs.liu@whu.edu.cn

  • Corresponding author:

    ZOU Xiancai, PhD, professor. E-mail: xczou@whu.edu.cn

  • Received Date: May 13, 2018
  • Published Date: September 04, 2019
  • In this paper, the gravity recovery and climate experiment (GRACE), altimetry, ARGO, TRMM (tropical rainfall measurement mission) data and multivariate ENSO index (MEI) from January 2005 to December 2016 are adopted to analyze the effects of ENSO on the Western Pacific and its coastal areas, from the aspects of sea level, oceanic mass, steric and the terrestrial water storage change. During the GRACE data processing, we remove the effect of tectonic signals, and use an iterative forward modeling method to recover time-varying signal. The result shows, the changes in the Western Pacific mean sea level (WPMSL) in response to ENSO are as follows:The sea level is lower during El Niño and higher during La Niña; in particular, during 2014-2016 El Nino, the WPMSL dropped by nearly 26.2 mm. The steric change is the dominant factor affecting the nonseasonal anomalies of the WPMSL. The nonseasonal anomalies of water storage in Australia and Indochina Peninsula also respond well to the ENSO, and the correlation coefficients with the MEI are -0.61 (lag three months) and -0.65 (lag eight months). The response of the Yangtze River basin to ENSO is mainly in the middle and lower basin, 2014-2016 El Niño caused the water storage in the Yangtze River basin to reach the maximum value in recent years.
  • [1]
    Nerem R S, Chambers D P, Choe C, et al. Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions[J]. Marine Geodesy, 2010, 33(s1):435-446 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01490419.2010.491031
    [2]
    Boening C, Willis J K, Landerer F W, et al. The 2011 La Niña:So Strong, the Oceans Fell[J]. Geophysical Research Letters, 2012, 39(19):1-5 doi: 10.1029/2012GL053055/abstract
    [3]
    袁媛, 周宁芳, 李崇银.中国华北雾霾天气与超强El Nino事件的相关性研究[J].地球物理学报, 2017, 60(1):11-21 http://www.cnki.com.cn/Article/CJFDTotal-DQWX201701003.htm

    Yuan Yuan, Zhou Ningfang, Li Chongyin. Correlation Between Haze in North China and Super El Niño Events[J]. Chinese J Geophys, 2017, 60(1):11-21 http://www.cnki.com.cn/Article/CJFDTotal-DQWX201701003.htm
    [4]
    冯伟, 钟敏, 许厚泽.联合卫星测高、卫星重力和海洋浮标资料研究2005-2013年的全球海平面变化[J].地球物理学进展, 2014, 29(2):471-477 http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201402001.htm

    Feng Wei, Zhong Min, Xu Houze. Global Sea Level Changes Estimated from Satellite Altimetry, Satellite Gravimetry and Argo Data During 2005-2013[J]. Progress in Geophysics, 2014, 29(2):471-477 http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201402001.htm
    [5]
    张保军, 王泽民.联合卫星重力、卫星测高和海洋资料研究全球海平面变化.武汉大学学报·信息科学版, 2015, 40(11):1453-1459 http://ch.whu.edu.cn/CN/abstract/abstract3363.shtml

    Zhang Baojun, Wang Zemin. Global Sea Level Variations Estimated from Satellite Altimetry, GRACE and Oceanographic Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11):1453-1459 http://ch.whu.edu.cn/CN/abstract/abstract3363.shtml
    [6]
    Chambers D P, Cazenave A, Champollion N, et al. Evaluation of the Global Mean Sea Level Budget Between 1993 and 2014[J]. Surveys in Geophysics, 2017, 38(1):1-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29764a83e008fcfc0187da7080dc107d
    [7]
    Willis J K, Chambers D P, Nerem R S. Assessing the Globally Averaged Sea Level Budget on Seasonal to Interannual Timescales[J]. Journal of Geophysical Research:Oceans, 2008, 113(C6):205-210 doi: 10.1029/2007JC004517/pdf
    [8]
    Chambers D P. Evaluation of New GRACE Time-Variable Gravity Data over the Ocean[J]. Geophysical Research Letters, 2006, 331(17):1-5 doi: 10.1029-2006GL027296/
    [9]
    Chambers D P, Bonin J A. Evaluation of Release-05 GRACE Time-Variable Gravity Coefficients over the Ocean[J]. Ocean Science, 2012, 8(5):859-868 doi: 10.5194/os-8-859-2012
    [10]
    Landerer F W, Swenson S C. Accuracy of Scaled GRACE Terrestrial Water Storage Estimates[J]. Water Resources Research, 2012, 48(4):W04531 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227162423/
    [11]
    Yi S, Wang Q, Sun W. Basin Mass Dynamic Changes in China from GRACE Based on a Multibasin Inversion Method[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(5):3782-3803 doi: 10.1002/2015JB012608
    [12]
    Han S, Riva R, Sauber J, et al. Source Parameter Inversion for Recent Great Earthquakes from a Decade-Long Observation of Global Gravity Fields[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(3):1240-1267 doi: 10.1002/jgrb.50116
    [13]
    Swenson S, Chambers D, Wahr J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(B8):194-205 doi: 10.1029-2007JB005338/
    [14]
    Wahr J, Molenaar M, Bryan F. Time Variability of the Earth's Gravity Field:Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research, 1998, 103(B12):30205-30230 doi: 10.1029/98JB02844
    [15]
    Peltier W R, Argus D F, Drummond R. Space Geodesy Constrains Ice Age Terminal Deglaciation:The Global ICE-6G_C (VM5a) Model[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(1):450-487 doi: 10.1002/2014JB011176
    [16]
    Broerse T, Riva R, Simons W, et al. Postseismic GRACE and GPS Observations Indicate a Rheology Contrast Above and Below the Sumatra Slab[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(7):5343-5361 doi: 10.1002/2015JB011951
    [17]
    Chen J L, Wilson C R, Tapley B D. Contribution of Ice Sheet and Mountain Glacier Melt to Recent Sea Level Rise[J]. Nature Geoscience, 2013, 6(7):549-552 doi: 10.1038/ngeo1829
    [18]
    Yi S, Sun W, Heki K, et al. An Increase in the Rate of Global Mean Sea Level Rise Since 2010[J]. Geophysical Research Letters, 2015, 42(10):3998-4006 doi: 10.1002/2015GL063902
    [19]
    Yi S, Sun W, Feng W, et al. Anthropogenic and Climate-Driven Water Depletion in Asia[J]. Geophysical Research Letters, 2016, 43:9061-9069 doi: 10.1002/2016GL069985
    [20]
    Riser S C, Freeland H J, Roemmich D, et al. Fifteen Years of Ocean Observations with the Global Argo Array[J]. Nature Climate Change, 2016, 6(2):145-153 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=958878ab7fb8df8bdfc6482ad3863c32
    [21]
    Masters D, Nerem R S, Choe C, et al. Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2[J]. Marine Geodesy, 2012, 35(s1):20-41 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01490419.2012.717862
    [22]
    Piecuch C G, Quinn K J. El Niño, La Niña, and the Global Sea Level Budget[J]. Ocean Science, 2016, 12(6):1-18
    [23]
    Zhang Z, Chao B F, Chen J, et al. Terrestrial Water Storage Anomalies of Yangtze River Basin Droughts Observed by GRACE and Connections with ENSO[J]. Global & Planetary Change, 2015, 126:35-45 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54f378c4e6eb6a2aded09085714fb370
    [24]
    Fasullo J T, Boening C, Landerer F W, et al. Australia's Unique Influence on Global Sea Level in 2010-2011[J]. Geophysical Research Letters, 2013, 40(16):4368-4373 doi: 10.1002/grl.50834
  • Related Articles

    [1]ZHANG Feifei, WANG Hao, ZHANG Yimi, HAN Bo, WANG Wanyin. Accuracy Analysis of Satellite Altimetry Gravity Data in the Western Pacific Area[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 30-41. DOI: 10.13203/j.whugis20220429
    [2]XIONG Jinghua, GUO Shenglian, WANG Jun, YIN Jiabo, LI Na. Variation and Attribution of Terrestrial Water Storage in the Yangtze River Basin[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2241-2248. DOI: 10.13203/j.whugis20230017
    [3]LI Jiancheng, LI Xianpao, ZHONG Bo. Review of Inverting GNSS Surface Deformations for Regional Terrestrial Water Storage Changes[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1724-1735. DOI: 10.13203/j.whugis20230363
    [4]LI Zhao, LU Yang, JIANG Weiping, CHEN Qusen, CHEN Hua, YE Shirong, LAI Shandong. A New Combined Terrestrial Water Storage Change Model Based on GRACE Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1180-1191. DOI: 10.13203/j.whugis20230201
    [5]XU Tianhe, YANG Yuanyuan, MU Dapeng, YIN Peng. Causes of Coastal Sea Level Change[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1750-1757. DOI: 10.13203/j.whugis20210643
    [6]LI Wanqiu, WANG Wei, ZHANG Chuanyin, WEN Hanjiang, ZHONG Yulong. Water Storage Variation Inversion in the Tibetan Plateau by Using Forward-Modeling Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 141-149. DOI: 10.13203/j.whugis20180263
    [7]WANG Zemin, ZHANG Baojun, JIANG Weiping, CHE Guowei. Ocean Mass Variations in the South China Sea Inferred from Satellite Altimetry, GRACE, Oceanographic and Meteorological Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 571-577, 636. DOI: 10.13203/j.whugis20150691
    [8]LI Wudong, GUO Jinyun, CHANG Xiaotao, ZHU Guangbin, KONG Qiaoli. Terrestrial Water Storage Changes in the Tianshan Mountains of Xinjiang Measured by GRACE During 2003~2013[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1021-1026. DOI: 10.13203/j.whugis20150079
    [9]SHI Yan, DENG Min, LIU Qiliang, TANG Jianbo. A Multi-scale Regionalization Method for Sea Surface TemperatureBased on a Scale-Space Clustering[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1484-1489.
    [10]BAO Lifeng~, . Distribution of Vertical Graident of Altimetry Gravity in the Western Pacific[J]. Geomatics and Information Science of Wuhan University, 2005, 30(9): 817-820.
  • Cited by

    Periodical cited type(1)

    1. 陈浩,许月萍,郑超昊,郭玉雪. 厄尔尼诺-南方涛动影响下月尺度水文模型参数可移植性. 同济大学学报(自然科学版). 2023(01): 75-82 .

    Other cited types(1)

Catalog

    Article views (1611) PDF downloads (149) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return