GONG Xunqiang, QIU Wanjin, LÜ Kaiyun, ZHANG Tong, ZHANG Rui, LUO Sheng. A Combined Traffic Flow Prediction Model Based on Variational Mode Decomposition and Adaptive Graph Convolutional Gated Recurrent Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2329-2341. DOI: 10.13203/j.whugis20230249
Citation: GONG Xunqiang, QIU Wanjin, LÜ Kaiyun, ZHANG Tong, ZHANG Rui, LUO Sheng. A Combined Traffic Flow Prediction Model Based on Variational Mode Decomposition and Adaptive Graph Convolutional Gated Recurrent Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2329-2341. DOI: 10.13203/j.whugis20230249

A Combined Traffic Flow Prediction Model Based on Variational Mode Decomposition and Adaptive Graph Convolutional Gated Recurrent Network

More Information
  • Received Date: January 24, 2024
  • Available Online: January 24, 2024
  • Objectives 

    Accurate traffic flow prediction plays a crucial role in enhancing traffic efficiency and safety, making it a prominent research focus in intelligent transportation systems. However, traditional static graph structures struggle to capture the global spatiotemporal dynamics of traffic flow, while short-term fluctuations in traffic introduce non-stationarity, further complicating accurate predictions.

    Methods 

    To address these challenges, this paper proposes a traffic flow prediction model that integrates variational mode decomposition (VMD) with an adaptive graph convolutional gated recurrent network. First, considering the non-stationarity of traffic flow, VMD is employed to decompose the time series into stable intrinsic mode function (IMF) components. Then, the model leverages an adaptive adjacency matrix and graph convolutional gated units to dynamically learn the complex spatiotemporal interactions among the IMF components, enabling a more precise characterization of traffic flow trends. Finally, the reconstructed model predicts the IMF components, yielding the overall traffic flow forecast.

    Results 

    The experiments conducted on the PeMS04 dataset demonstrate that the proposed model significantly outperforms baseline models in metrics such as mean absolute error, root mean square error, and mean absolute percentage error, achieving over 33% improvement. Compared to the ablation models, the performance of the proposed model improves over 15%.

    Conclusions 

    The results highlight the substantial advantages and the promising potential of the proposed model for applications in traffic flow prediction tasks.

  • [1]
    Wu P, Huang Z L, Pian Y Z, et al. A Combined Deep Learning Method with Attention-Based LSTM Model for Short-Term Traffic Speed Forecasting[J]. Journal of Advanced Transportation, 2020, 2020(1): 8863724.
    [2]
    Hsueh Y L, Yang Y R. A Short-Term Traffic Speed Prediction Model Based on LSTM Networks[J]. International Journal of Intelligent Transportation Systems Research, 2021, 19(3): 510-524.
    [3]
    方志祥, 黄守倩, 苏荣祥, 等. 高速公路多源数据融合下的层次拥堵区间探测方法[J]. 武汉大学学报(信息科学版), 2020, 45(5): 682-690.

    Fang Zhixiang, Huang Shouqian, Su Rongxiang, et al. Detecting Hierarchical Congestion Intervals Based on the Fusion of Multi-source Highway Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 682-690.
    [4]
    曲栩, 甘锐, 安博成, 等. 基于广义时空图卷积网络的交通群体运动态势预测[J]. 交通运输工程学报, 2022, 22(3): 79-88.

    Qu Xu, Gan Rui, An Bocheng, et al. Prediction of Traffic Swarm Movement Situation Based on Generalized Spatio-Temporal Graph Convolution Network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 79-88.
    [5]
    马超群, 李培坤, 朱才华, 等. 基于不同时间粒度的城市轨道交通短时客流预测[J]. 长安大学学报(自然科学版), 2020, 40(3): 75-83.

    Ma Chaoqun, Li Peikun, Zhu Caihua, et al. Short-Term Passenger Flow Forecast of Urban Rail Transit Based on Different Time Granularities[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(3): 75-83.
    [6]
    于少伟, 关京京, 吉灿, 等. 城乡快速干道车-人冲突时间窗预测模型[J]. 中国公路学报, 2022, 35(9): 80-89.

    Yu Shaowei, Guan Jingjing, Ji Can, et al. Prediction Model for Vehicle-Pedestrian Conflict Time Window on Urban and Rural Expressways[J]. China Journal of Highway and Transport, 2022, 35(9): 80-89.
    [7]
    Feng B, Xu J M, Zhang Y G, et al. Urban Road Traffic Speed Prediction Based on LSTM [J]. Applied Sciences, 2021, 11(10): 574-588.
    [8]
    阎嘉琳, 向隆刚, 吴华意, 等. 基于LSTM的城市道路交通速度预测[J]. 地理信息世界, 2019, 26(5): 79-85.

    Yan Jialin, Xiang Longgang, Wu Huayi, et al. Urban Road Traffic Speed Prediction Based on LSTM[J]. Geomatics World, 2019, 26(5): 79-85.
    [9]
    李达, 瞿伟, 张勤, 等. 融合多层感知机和优化支持向量回归的滑坡位移预测模型[J]. 武汉大学学报(信息科学版), 2023, 48(8): 1380-1388.

    Li Da, Qu Wei, Zhang Qin, et al. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388.
    [10]
    Guo S N, Lin Y F, Li S J, et al. Deep Spatial–Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926.
    [11]
    龚循强, 汪宏宇, 鲁铁定, 等. 高铁桥墩沉降的通用渐进分解长期预测网络模型[J]. 测绘学报, 2024, 53(6): 1113-1127.

    Gong Xunqiang, Wang Hongyu, Lu Tieding, et al. A General Progressive Decomposition Long-Term Prediction Network Model for High-Speed Railway Bridge Pier Settlement[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127.
    [12]
    罗袆沅, 蒋亚楠, 许强, 等. 基于最优分解模态和GRU模型的库岸滑坡位移预测研究[J]. 武汉大学学报(信息科学版), 2023, 48(5): 702-709.

    Luo Huiyuan, Jiang Yanan, Xu Qiang, et al. Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 702-709.
    [13]
    Guo J L, Song C Y, Zhang H, et al. Multi-step Traffic Speed Prediction Model with Auxiliary Features on Urban Road Networks and Its Understanding[J]. IET Intelligent Transport Systems, 2020, 14(14): 1997-2009.
    [14]
    Lu Z L, Lv W F, Cao Y B, et al. LSTM Variants Meet Graph Neural Networks for Road Speed Prediction[J]. Neurocomputing, 2020, 400: 34-45.
    [15]
    张玺君, 郝俊. EEMD+BiGRU组合模型在短时交通流量预测中的应用[J]. 国防科技大学学报, 2023, 45(2): 73-80.

    Zhang Xijun, Hao Jun. Application of EEMD+BiGRU Combination Model in Short-Term Traffic Flow Prediction[J]. Journal of National University of Defense Technology, 2023, 45(2): 73-80.
    [16]
    Zhang W D, Liu F, Zheng X L, et al. A Hybrid EMD-SVM Based Short-Term Wind Power Forecasting Model[C]//IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, Australia, 2015.
    [17]
    Zhao L, Song Y J, Zhang C, et al. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858.
    [18]
    Liu D Y, Xu X B, Xu W, et al. Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data[J]. Sensors, 2021, 21(19): 6402.
    [19]
    Liu Y F, Wu C Z, Wen J H, et al. A Grey Convolutional Neural Network Model for Traffic Flow Prediction Under Traffic Accidents[J]. Neurocomputing, 2022, 500: 761-775.
    [20]
    Ye Y Q, Xiao Y, Zhou Y X, et al. Dynamic Multi-graph Neural Network for Traffic Flow Prediction Incorporating Traffic Accidents[J]. Expert Systems with Applications, 2023, 234: 121101.
    [21]
    Yu B, Yin H T, Zhu Z X. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting[C]//The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018.
    [22]
    Guo S N, Lin Y F, Feng N, et al. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
    [23]
    Song C, Lin Y F, Guo S N, et al. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921.
    [24]
    Doğan E. LSTM Training Set Analysis and Clustering Model Development for Short-Term Traffic Flow Prediction[J]. Neural Computing and Applications, 2021, 33(17): 11175-11188.
    [25]
    Toshniwal D, Chaturvedi N, Parida M, et al. Application of Clustering Algorithms for Spatio-Temporal Analysis of Urban Traffic Data[J]. Transportation Research Procedia, 2020, 48: 1046-1059.
    [26]
    Wu S S, Wang Z Y, Du Z H, et al. Geographically and Temporally Neural Network Weighted Regression for Modeling Spatiotemporal Non-stationary Relationships[J]. International Journal of Geographical Information Science, 2021, 35(3): 582-608.
    [27]
    柳絮, 王坚, 李文. 集成变分模态分解和希尔伯特-黄变换的结构振动时频提取模型[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1686-1692.

    Liu Xu, Wang Jian, Li Wen. A Time-Frequency Extraction Model of Structural Vibration Combining VMD and HHT[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1686-1692.
    [28]
    罗亦泳, 姚宜斌, 黄城, 等. 基于改进VMD的变形特征提取与分析[J]. 武汉大学学报(信息科学版), 2020, 45(4): 612-619.

    Luo Yiyong, Yao Yibin, Huang Cheng, et al. Deformation Feature Extraction and Analysis Based on Improved Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 612-619.
  • Related Articles

    [1]ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085
    [2]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [3]KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856
    [4]ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836.
    [5]ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944.
    [6]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [7]HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536.
    [8]CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296.
    [9]DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722.
    [10]ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130.
  • Cited by

    Periodical cited type(28)

    1. 李岚,朱锋,刘万科,张小红. 城市分类场景的GNSS伪距随机模型构建及其定位性能分析. 武汉大学学报(信息科学版). 2025(03): 545-553 .
    2. 苑晓峥,徐爱功,高猛,祝会忠. 基于低成本终端抗差速度约束差分定位算法. 大地测量与地球动力学. 2024(01): 27-34 .
    3. 曲利红,李俊芹. 通用智能技术路线下的人机传播应用. 电视技术. 2024(03): 176-179 .
    4. 刘一,刘敏,边少锋,翟国君,周威. 北斗低成本接收机单频PPP海上定位性能分析. 海洋测绘. 2024(03): 68-72+82 .
    5. 张宝,吴泓正,邸越超,张传定. Android智能手机GNSS定位研究进展. 测绘科学. 2024(05): 1-14 .
    6. 侯雪,张献志,叶远斌. 基于GDCORS的北斗终端高精度定位算法实现及性能分析. 地理空间信息. 2024(08): 72-75 .
    7. 孙俊锋,穆宏波,于先文,廖鹏,吴焱泽. 顾及系统误差影响的智能手机GNSS观测值质量分析. 测绘工程. 2024(05): 43-49 .
    8. 孙俊锋,吴焱泽,于先文,廖鹏,叶嘉宁,曹嘉瑞. 基于北斗的智能手机内河航道高精度定位软件研发. 现代测绘. 2024(03): 13-17 .
    9. 尹昊华,雷博,连宏亮,徐邦岁,曾翔强. 基于安卓智能手机的高精度定位系统研发及测试. 国土资源导刊. 2024(03): 9-17 .
    10. 祝会忠,孙沐凡,李军. GNSS低成本智能终端抗差自适应差分定位算法. 导航定位学报. 2024(06): 10-19 .
    11. 王瑞光,王中元,胡超,王阳阳,刘冰雨. 智能手机BDS-3/GPS数据质量及SPP性能分析. 大地测量与地球动力学. 2023(02): 168-172 .
    12. 孟庆庆,郭德普,胡洁,薄伟伟. 移动GIS在黄委直管河道确权划界中的应用. 水利信息化. 2023(02): 44-49 .
    13. 徐彦田,刘巍峰,李玉星,姜鼎璇. BDS/GPS/GAL智能手机RTK动态定位算法. 无线电工程. 2023(05): 1061-1067 .
    14. 王甫红,栾梦杰,程雨欣,祝浩祈,赵广越,张万威. 城市环境下智能手机车载GNSS/MEMS IMU紧组合定位算法. 武汉大学学报(信息科学版). 2023(07): 1106-1116 .
    15. 郑东,汪梦月,杨中皇. SM3国密算法在Android内核的汇编语言快速实现. 西安邮电大学学报. 2023(03): 57-62 .
    16. 逯遥,聂志喜,王振杰,徐晓飞,张远帆,王翔. 单/双频混合数据的Android手机精密单点定位方法. 测绘科学. 2023(08): 64-71+129 .
    17. 傅鑫榕,王甫红,郭磊,栾梦杰,祝浩祈. 不同电离层模型对智能手机实时PPP精度的影响分析. 测绘地理信息. 2023(06): 26-31 .
    18. 葛在宸,王明华. 基于智能手机GNSS伪距定位的运动距离和速度确定. 江西科学. 2023(06): 1124-1130 .
    19. 邱树素,顾桢,章怿钦,叶俊华. 基于手机内置传感器的相对高程模型. 北京测绘. 2023(12): 1676-1682 .
    20. 董少敏,辛宪会,刘杰,陈文哲,卢为选. 便携式GNSS接收机集成方案及其定位精度分析. 海洋测绘. 2022(03): 56-60 .
    21. 甘露,王志斌,张少波,韩明敏,陈攀,黄威翰. Android智能手机间相对定位性能分析. 测绘工程. 2022(05): 54-60 .
    22. 李阿红. 基于混合神经网络的Android软件缺陷精准预测研究. 自动化与仪器仪表. 2022(08): 33-36+41 .
    23. 张小红,陶贤露,王颖喆,刘万科,朱锋. 城市场景智能手机GNSS/MEMS融合车载高精度定位. 武汉大学学报(信息科学版). 2022(10): 1740-1749 .
    24. 王怡欣,刘晖,钱闯,范潇云. 一种基于智能手机的实时高精度定位系统开发与车载应用测试. 测绘通报. 2022(10): 56-61 .
    25. 曾树林,匡翠林. 智能手机RTK定位软件实现及应用试验. 全球定位系统. 2022(05): 72-80 .
    26. 祝会忠,李骏鹏,李军. 智能手机GNSS多系统多频实时动态定位方法. 测绘科学. 2022(09): 8-19 .
    27. 舒宝,义琛,王利,许豪,田云青. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析. 大地测量与地球动力学. 2022(12): 1222-1226 .
    28. 吴文坛,秘金钟,谷守周. 智能手机广域差分实时定位分析. 测绘科学. 2022(10): 39-44 .

    Other cited types(27)

Catalog

    Article views PDF downloads Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return