Citation: | GONG Xunqiang, QIU Wanjin, LÜ Kaiyun, ZHANG Tong, ZHANG Rui, LUO Sheng. A Combined Traffic Flow Prediction Model Based on Variational Mode Decomposition and Adaptive Graph Convolutional Gated Recurrent Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2329-2341. DOI: 10.13203/j.whugis20230249 |
Accurate traffic flow prediction plays a crucial role in enhancing traffic efficiency and safety, making it a prominent research focus in intelligent transportation systems. However, traditional static graph structures struggle to capture the global spatiotemporal dynamics of traffic flow, while short-term fluctuations in traffic introduce non-stationarity, further complicating accurate predictions.
To address these challenges, this paper proposes a traffic flow prediction model that integrates variational mode decomposition (VMD) with an adaptive graph convolutional gated recurrent network. First, considering the non-stationarity of traffic flow, VMD is employed to decompose the time series into stable intrinsic mode function (IMF) components. Then, the model leverages an adaptive adjacency matrix and graph convolutional gated units to dynamically learn the complex spatiotemporal interactions among the IMF components, enabling a more precise characterization of traffic flow trends. Finally, the reconstructed model predicts the IMF components, yielding the overall traffic flow forecast.
The experiments conducted on the PeMS04 dataset demonstrate that the proposed model significantly outperforms baseline models in metrics such as mean absolute error, root mean square error, and mean absolute percentage error, achieving over 33% improvement. Compared to the ablation models, the performance of the proposed model improves over 15%.
The results highlight the substantial advantages and the promising potential of the proposed model for applications in traffic flow prediction tasks.
[1] |
Wu P, Huang Z L, Pian Y Z, et al. A Combined Deep Learning Method with Attention-Based LSTM Model for Short-Term Traffic Speed Forecasting[J]. Journal of Advanced Transportation, 2020, 2020(1): 8863724.
|
[2] |
Hsueh Y L, Yang Y R. A Short-Term Traffic Speed Prediction Model Based on LSTM Networks[J]. International Journal of Intelligent Transportation Systems Research, 2021, 19(3): 510-524.
|
[3] |
方志祥, 黄守倩, 苏荣祥, 等. 高速公路多源数据融合下的层次拥堵区间探测方法[J]. 武汉大学学报(信息科学版), 2020, 45(5): 682-690.
Fang Zhixiang, Huang Shouqian, Su Rongxiang, et al. Detecting Hierarchical Congestion Intervals Based on the Fusion of Multi-source Highway Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 682-690.
|
[4] |
曲栩, 甘锐, 安博成, 等. 基于广义时空图卷积网络的交通群体运动态势预测[J]. 交通运输工程学报, 2022, 22(3): 79-88.
Qu Xu, Gan Rui, An Bocheng, et al. Prediction of Traffic Swarm Movement Situation Based on Generalized Spatio-Temporal Graph Convolution Network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 79-88.
|
[5] |
马超群, 李培坤, 朱才华, 等. 基于不同时间粒度的城市轨道交通短时客流预测[J]. 长安大学学报(自然科学版), 2020, 40(3): 75-83.
Ma Chaoqun, Li Peikun, Zhu Caihua, et al. Short-Term Passenger Flow Forecast of Urban Rail Transit Based on Different Time Granularities[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(3): 75-83.
|
[6] |
于少伟, 关京京, 吉灿, 等. 城乡快速干道车-人冲突时间窗预测模型[J]. 中国公路学报, 2022, 35(9): 80-89.
Yu Shaowei, Guan Jingjing, Ji Can, et al. Prediction Model for Vehicle-Pedestrian Conflict Time Window on Urban and Rural Expressways[J]. China Journal of Highway and Transport, 2022, 35(9): 80-89.
|
[7] |
Feng B, Xu J M, Zhang Y G, et al. Urban Road Traffic Speed Prediction Based on LSTM [J]. Applied Sciences, 2021, 11(10): 574-588.
|
[8] |
阎嘉琳, 向隆刚, 吴华意, 等. 基于LSTM的城市道路交通速度预测[J]. 地理信息世界, 2019, 26(5): 79-85.
Yan Jialin, Xiang Longgang, Wu Huayi, et al. Urban Road Traffic Speed Prediction Based on LSTM[J]. Geomatics World, 2019, 26(5): 79-85.
|
[9] |
李达, 瞿伟, 张勤, 等. 融合多层感知机和优化支持向量回归的滑坡位移预测模型[J]. 武汉大学学报(信息科学版), 2023, 48(8): 1380-1388.
Li Da, Qu Wei, Zhang Qin, et al. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388.
|
[10] |
Guo S N, Lin Y F, Li S J, et al. Deep Spatial–Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926.
|
[11] |
龚循强, 汪宏宇, 鲁铁定, 等. 高铁桥墩沉降的通用渐进分解长期预测网络模型[J]. 测绘学报, 2024, 53(6): 1113-1127.
Gong Xunqiang, Wang Hongyu, Lu Tieding, et al. A General Progressive Decomposition Long-Term Prediction Network Model for High-Speed Railway Bridge Pier Settlement[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127.
|
[12] |
罗袆沅, 蒋亚楠, 许强, 等. 基于最优分解模态和GRU模型的库岸滑坡位移预测研究[J]. 武汉大学学报(信息科学版), 2023, 48(5): 702-709.
Luo Huiyuan, Jiang Yanan, Xu Qiang, et al. Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 702-709.
|
[13] |
Guo J L, Song C Y, Zhang H, et al. Multi-step Traffic Speed Prediction Model with Auxiliary Features on Urban Road Networks and Its Understanding[J]. IET Intelligent Transport Systems, 2020, 14(14): 1997-2009.
|
[14] |
Lu Z L, Lv W F, Cao Y B, et al. LSTM Variants Meet Graph Neural Networks for Road Speed Prediction[J]. Neurocomputing, 2020, 400: 34-45.
|
[15] |
张玺君, 郝俊. EEMD+BiGRU组合模型在短时交通流量预测中的应用[J]. 国防科技大学学报, 2023, 45(2): 73-80.
Zhang Xijun, Hao Jun. Application of EEMD+BiGRU Combination Model in Short-Term Traffic Flow Prediction[J]. Journal of National University of Defense Technology, 2023, 45(2): 73-80.
|
[16] |
Zhang W D, Liu F, Zheng X L, et al. A Hybrid EMD-SVM Based Short-Term Wind Power Forecasting Model[C]//IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, Australia, 2015.
|
[17] |
Zhao L, Song Y J, Zhang C, et al. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858.
|
[18] |
Liu D Y, Xu X B, Xu W, et al. Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data[J]. Sensors, 2021, 21(19): 6402.
|
[19] |
Liu Y F, Wu C Z, Wen J H, et al. A Grey Convolutional Neural Network Model for Traffic Flow Prediction Under Traffic Accidents[J]. Neurocomputing, 2022, 500: 761-775.
|
[20] |
Ye Y Q, Xiao Y, Zhou Y X, et al. Dynamic Multi-graph Neural Network for Traffic Flow Prediction Incorporating Traffic Accidents[J]. Expert Systems with Applications, 2023, 234: 121101.
|
[21] |
Yu B, Yin H T, Zhu Z X. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting[C]//The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018.
|
[22] |
Guo S N, Lin Y F, Feng N, et al. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
|
[23] |
Song C, Lin Y F, Guo S N, et al. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921.
|
[24] |
Doğan E. LSTM Training Set Analysis and Clustering Model Development for Short-Term Traffic Flow Prediction[J]. Neural Computing and Applications, 2021, 33(17): 11175-11188.
|
[25] |
Toshniwal D, Chaturvedi N, Parida M, et al. Application of Clustering Algorithms for Spatio-Temporal Analysis of Urban Traffic Data[J]. Transportation Research Procedia, 2020, 48: 1046-1059.
|
[26] |
Wu S S, Wang Z Y, Du Z H, et al. Geographically and Temporally Neural Network Weighted Regression for Modeling Spatiotemporal Non-stationary Relationships[J]. International Journal of Geographical Information Science, 2021, 35(3): 582-608.
|
[27] |
柳絮, 王坚, 李文. 集成变分模态分解和希尔伯特-黄变换的结构振动时频提取模型[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1686-1692.
Liu Xu, Wang Jian, Li Wen. A Time-Frequency Extraction Model of Structural Vibration Combining VMD and HHT[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1686-1692.
|
[28] |
罗亦泳, 姚宜斌, 黄城, 等. 基于改进VMD的变形特征提取与分析[J]. 武汉大学学报(信息科学版), 2020, 45(4): 612-619.
Luo Yiyong, Yao Yibin, Huang Cheng, et al. Deformation Feature Extraction and Analysis Based on Improved Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 612-619.
|
[1] | ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085 |
[2] | ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078 |
[3] | KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856 |
[4] | ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836. |
[5] | ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944. |
[6] | CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477. |
[7] | HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536. |
[8] | CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296. |
[9] | DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722. |
[10] | ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130. |