WANG Mi, CHEN Junbo, PI Yingdong, WU Qianyu. A Fast and Accurate Orbit Prediction Method for Satellite On-Orbit Autonomous Mission Planning[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 879-887. DOI: 10.13203/j.whugis20230223
Citation: WANG Mi, CHEN Junbo, PI Yingdong, WU Qianyu. A Fast and Accurate Orbit Prediction Method for Satellite On-Orbit Autonomous Mission Planning[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 879-887. DOI: 10.13203/j.whugis20230223

A Fast and Accurate Orbit Prediction Method for Satellite On-Orbit Autonomous Mission Planning

More Information
  • Received Date: November 27, 2023
  • Available Online: May 12, 2024
  • Objectives 

    Satellite on-orbit autonomous mission planning requires high-precision orbit prediction data to calculate the feasible imaging time windows and imaging posture requirements for the intended observation targets. This process involves integrating these factors with other constraint conditions to accomplish the mission planning.

    Methods 

    In the context of limited computational resources onboard satellites, this paper proposes a novel method to reduce resource consumption in orbit prediction process and meet the demands of autonomous mission planning. First, based on two-line element (TLE) and a simplified general perturbation model, the proposed method utilizes multiple sets of orbital data as input and introduces a new measurement metric. Then, it iteratively generates TLE by rationally setting data weights and progressively adjusting them to get the results of orbit prediction. Finally, the total error for orbit prediction and the initial value error of imaging parameters for simulating observation targets are calculated for quantitative evaluation.

    Results 

    Experimental results demonstrate that the proposed method requires only a small amount of input data to achieve a 72-hour orbit prediction with the accuracy better than 4 km and the average computation time of 12.76 s. Compared to high precision orbit propagator model, the proposed method provides higher prediction accuracy and faster execution speed in long-period orbit prediction. The calculated start imaging time error for simulated observation targets is less than 0.2 s, and the initial imaging posture errors in the three-axis directions are all better than 0.03°, which is lower than the attitude pointing accuracy requirement for the imaging process of camera onboard Luojia3-01 satellite.

    Conclusions 

    The proposed method offers high prediction accuracy and demands fewer temporal and spatial resources, making it of great significance for satellite on-orbit autonomous mission planning

  • [1]
    李栋, 董正宏, 刘晓昂. 遥感卫星应用发展现状及启示[J]. 中国航天, 2020(1): 46-53.

    Li Dong, Dong Zhenghong, Liu Xiaoang. The Present Status and Its Enlightenment of Remote Sensing Satellite Application[J]. Aerospace China, 2020(1): 46-53.
    [2]
    王新, 唐世浩, 曹治强. 风云气象卫星“一带一路” 热带气旋监测能力与最新进展[J]. 海洋气象学报, 2020, 40(2): 10-18.

    Wang Xin, Tang Shihao, Cao Zhiqiang. Capability and Latest Progress of Tropical Cyclone Monitoring over the Belt and Road Area by FENGYUN Meteorological Satellites[J]. Journal of Marine Meteorology, 2020, 40(2): 10-18.
    [3]
    彭双, 伍江江, 陈浩, 等. 基于卷积注意力网络的卫星观测任务序贯决策方法[J]. 郑州大学学报(理学版), 2023, 55(5): 47-52.

    Peng Shuang, Wu Jiangjiang, Chen Hao, et al. Satellite Observation Task Sequential Decision-Making Method Based on Convolutional Attention Neural Network[J]. Journal of Zhengzhou University (Natural Science Edition), 2023, 55(5): 47-52.
    [4]
    彭双, 伍江江, 陈浩, 等. 基于注意力神经网络的对地观测卫星星上自主任务规划方法[J]. 计算机科学, 2022, 49(7): 242-247.

    Peng Shuang, Wu Jiangjiang, Chen Hao, et al. Satellite Onboard Observation Task Planning Based on Attention Neural Network[J]. Computer Science, 2022, 49(7): 242-247.
    [5]
    仵倩玉, 王密, 陈俊博. 语义描述驱动的启明星一号自主任务规划方法[J]. 武汉大学学报(信息科学版), 2023, 48(8): 1264-1272.

    Wu Qianyu, Wang Mi, Chen Junbo. Semantic Description Driven Autonomous Mission Planning Method for QMX-1[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1264-1272.
    [6]
    张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(3): 939-947.

    Zhang Xinyu, Liu Yuan, Song Jianing. Short-Term Orbit Prediction Based on LSTM Neural Network[J]. Systems Engineering and Electronics, 2022, 44(3): 939-947.
    [7]
    韩雨恒. 基于LSTM神经网络的轨道预报算法研究[J]. 科学技术创新, 2022(21): 88-91.

    Han Yuheng. Research on Orbit Prediction Algorithm Based on LSTM Neural Network[J]. Scientific and Technological Innovation, 2022(21): 88-91.
    [8]
    吉长东, 杨超, 王强. 基于EEMD-LSTM模型的BDS卫星轨道预报精度分析[J]. 大地测量与地球动力学, 2023, 43(4): 345-350.

    Ji Changdong, Yang Chao, Wang Qiang. Accuracy Analysis of BDS Satellite Orbit Prediction Based on EEMD-LSTM Model[J]. Journal of Geodesy and Geodynamics, 2023, 43(4): 345-350.
    [9]
    施文军,朱立东. 基于GRU的卫星轨道智能外推方法[C]//第十八届卫星通信学术年会, 中国, 北京, 2022.

    Shi Wenjun, Zhu Lidong. Intelligent Orbit Extrapolation Method of Satellite Based on GRU[C]//The 18th Annual Academic Conference on Satellite Communications, Beijing, China, 2022.
    [10]
    刘林, 王彦荣. 卫星轨道预报的一种分析方法[J]. 天文学报, 2005, 46(3): 307-313.

    Liu Lin, Wang Yanrong. An Analytical Method for Satellite Orbit Forecasting[J]. Acta Astronomica Sinica, 2005, 46(3): 307-313.
    [11]
    杨志涛, 刘静, 刘林. 轨道分析解的改进方法及其应用[J]. 系统工程与电子技术, 2020, 42(2): 427-433.

    Yang Zhitao, Liu Jing, Liu Lin. Improved Method of Orbit Analytical Solution and Its Application[J]. Systems Engineering and Electronics, 2020, 42(2): 427-433.
    [12]
    刘成, 王勇勇, 朱淑珍, 等. 卫星轨道外推算法实现[J]. 电子设计工程, 2016, 24(17): 132-134.

    Liu Cheng, Wang Yongyong, Zhu Shuzhen, et al. Achieve Satellite Orbit Extrapolation[J]. Electronic Design Engineering, 2016, 24(17): 132-134.
    [13]
    袁俊军, 李凯, 唐成盼, 等. 面向精密位置服务的低轨卫星轨道预报精度分析[J]. 测绘学报, 2022, 51(5): 640-647.

    Yuan Junjun, Li Kai, Tang Chengpan, et al. Accuracy Analysis of LEO Satellites Orbit Prediction for Precise Position Service[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 640-647.
    [14]
    常中祥, 周忠宝, 姚锋, 等. 星地协同架构下的高精度自主轨道预报方法[J].无线电工程, 2022, 52(7): 1160-1165.

    Chang Zhongxiang, Zhou Zhongbao, Yao Feng, et al. High Precision Autonomous Orbit Prediction Based on Satellite-Ground Cooperative Architecture[J]. Radio Engineering, 2022, 52(7):1160-1165.
    [15]
    车通宇, 杨力, 张传定, 等. 利用HPOP轨道仿真模型实现接收机自主历书外推[J]. 全球定位系统, 2015, 40(4): 18-22.

    Che Tongyu, Yang Li, Zhang Chuanding, et al. Executing Receiver Autonomous Ephemeris Extrapolation by HPOP Model[J]. GNSS World of China, 2015, 40(4): 18-22.
    [16]
    刘光明, 文援兰, 廖瑛. 基于无奇异变换的双行轨道根数生成算法[J]. 系统工程与电子技术, 2011, 33(5): 1104-1107.

    Liu Guangming, Wen Yuanlan, Liao Ying. Fitting Algorithm of TLE Parameters Based on Non-singular Transformation[J]. Systems Engineering and Electronics, 2011, 33(5): 1104-1107.
    [17]
    杨维廉. 两行根数的精度评估[J]. 航天器工程, 2009, 18(3): 8-13.

    Yang Weilian. Accuracy Evaluation of Two Line Element[J]. Spacecraft Engineering, 2009, 18(3): 8-13.
    [18]
    胡敏, 曾国强. 平均轨道根数与密切轨道根数的互换[J]. 飞行器测控学报, 2012, 31(2): 77-81.

    Hu Min, Zeng Guoqiang. Transformation Between Mean and Osculating Orbital Elements[J]. Journal of Spacecraft TT&C Technology, 2012, 31(2): 77-81.
    [19]
    刁宁辉, 刘建强, 孙从容, 等. 基于SGP4模型的卫星轨道计算[J]. 遥感信息, 2012, 27(4): 64-70.

    Diao Ninghui, Liu Jianqiang, Sun Congrong, et al. Satellite Orbit Calculation Based on SGP4 Model[J]. Remote Sensing Information, 2012, 27(4): 64-70.
    [20]
    Hoots F, Roehrich R. Models for Propagation of NORAD Element Sets[R]. Pesterson: Aerospace Defense Command, 1980.
    [21]
    Abay R, Balage S, Brown M, et al. Two-Line Element Estimation Using Machine Learning[J]. The Journal of the Astronautical Sciences, 2021, 68(1): 273-299.
    [22]
    Li B, Zhang Y, Huang J, et al. Improved Orbit Predictions Using Two-Line Elements Through Error Pattern Mining and Transferring[J]. Acta Astronautica, 2021, 188: 405-415.
    [23]
    Lee B S. NORAD TLE Conversion from Osculating Orbital Element[J]. Journal of Astronomy and Space Sciences, 2002, 19(4): 395-402.
    [24]
    朱洪欣, 彭碧波, 巨涛. 利用数值法获取两行根数[J]. 武汉大学学报(信息科学版), 2009, 34(9): 1113-1115.

    Zhu Hongxin, Peng Bibo, Ju Tao. Determination of Two-Line Elements with Numerical Method[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1113-1115.
    [25]
    刘光明,赵军锁. 基于无奇异变换的空间目标双行轨道根数快速生成算法[C]//第二届中国空天安全会议, 中国, 大连, 2017.

    Liu Guangming, Zhao Junsuo. Fitting Algorithm of Space Object’s TLE Parameters[C]//The 2nd China Aerospace Safety Conference, Dalian, China, 2017.
    [26]
    王若璞, 张浚哲, 郑勇, 等. 基于TLE的空间目标碰撞预警计算[J]. 测绘科学技术学报, 2009, 26(4): 269-271.

    Wang Ruopu, Zhang Junzhe, Zheng Yong, et al. Space Objects Collision Prediction Based on TLE[J]. Journal of Geomatics Science and Technology, 2009, 26(4): 269-271.
    [27]
    雷伟伟, 张捍卫, 李凯. 岁差章动模型更新等因素对坐标转换的影响[J]. 飞行器测控学报, 2016, 35(1): 53-62.

    Lei Weiwei, Zhang Hanwei, Li Kai. Effects of Precession-Nutation Models Update, Polar Motion, Difference Between UT1 and TT on Coordinate Transformation[J]. Journal of Spacecraft TT&C Technology, 2016, 35(1): 53-62.
  • Related Articles

    [1]HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164
    [2]FENG Qi, CHENG Xuejun, SHEN Xin, XIAO Xiao, WANG Lihui, ZHANG Wen. Inland Riverine Turbidity Estimation for Hanjiang River with Landsat 8 OLI Imager[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 643-647. DOI: 10.13203/j.whugis20141002
    [3]WANG Yuzhuo, LIU Xiuguo, ZHANG Wei. Raster River Networks Extraction Based on Parallel Multiple Flow Direction Algorithms[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1646-1652,1682. DOI: 10.13203/j.whugis20140645
    [4]LI Yuguang, LI Qingquan. A Fast Algorithm for Huge Volume Floating Car Data Map-Matching:A Vector to Raster Map Conversion Approach[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 724-728. DOI: 10.13203/j.whugis20140071
    [5]DONG Jian, PENG Rencan, CHEN Yi, LI Ning. An Algorithm for Centre Line Generation Based on Model of Approaching Intersection of Buffering Borderline from Reciprocal Direction[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1120-1123.
    [6]ZHANG Junfeng, FEI Lifan, HUANG Lina, LIU Yining. Real-Time Dynamic Rendering Algorithm of Terrain Using 3D_DP Method and Quad_TIN Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 346-350.
    [7]LAN Qiuping, FEI Lifan, LIU Yining. An Approach on Calculating Firn Volume Change from Multi-temporal DEMs[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1222-1225.
    [8]HUANG Lina, FEI Lifan. Experimental Investigation on the Three Dimension Generalization of Contour Lines using 3D D-P Algorithm[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 55-58.
    [9]YAN Huiwu, ZHU Guorui, XU Zhiyong, GAO Shan. Volume Rendering and 3D Modeling of Hydrogeologic Layer Based on Kriging Algorithm[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 611-614.
    [10]CHENG Penggen, GONG Jianya, SHI Wenzhong, LIU Shaohua. Geological Object Modeling Based on Quasi Tri-prism Volume and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 602-307.
  • Cited by

    Periodical cited type(17)

    1. 冉烽均,龚川. 基于OpenStreetMap数据的土地利用制图. 北京测绘. 2024(02): 238-244 .
    2. 樊潇. 以建立草原公园为抓手,推动牧区草原转型升级. 中国草食动物科学. 2022(01): 61-64 .
    3. 李霞,潘冬荣,孙斌,姜佳昌,俞慧云,王红霞,杜笑村,吴丹丹. 甘肃省草地退化概况分析——基于甘肃省第一、二次草原普查数据. 草业科学. 2022(03): 485-494 .
    4. 刘志刚,关文昊,何国兴,蒲小鹏,纪童,杨军银,李强,柳小妮. 黄河源5种高寒植物光谱特征分析及识别. 草原与草坪. 2022(04): 23-30 .
    5. 申紫雁,刘昌义,胡夏嵩,周林虎,许桐,李希来,李国荣. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究. 2021(02): 392-401 .
    6. 王俊奇,王广军,梁四海,杜海波,彭红明. 1996—2015年黄河源区植被覆盖度提取和时空变化分析. 冰川冻土. 2021(02): 662-674 .
    7. 朱宁,王浩,宁晓刚,刘娅菲. 草地退化遥感监测研究进展. 测绘科学. 2021(05): 66-76 .
    8. 沈贝贝,侯路路,丁蕾,范蓓蕾,毛平平,徐大伟,闫瑞瑞,辛晓平,陈金强. 数字牧场研究进展浅析. 中国农业信息. 2021(05): 1-11 .
    9. 刘炜,孙海霞,杨晓波. 基于高光谱图像的协同分层波谱识别——以兰州、榆林地区为例. 红外与毫米波学报. 2020(01): 99-110 .
    10. 韩万强,靳瑰丽,岳永寰,王惠宁,宫珂,吴雪儿,吾鲁帕·阿得尔卡里. 伊犁绢蒿荒漠草地3种主要植物光谱及植被指数改进. 新疆农业科学. 2020(05): 950-957 .
    11. 刘炜,孙海霞,杨晓波,董建民. 对数变换、导数变换的高寒草地反射光谱特征分析与识别——以那曲地区HJ-1A/HSI图像为例. 光谱学与光谱分析. 2020(07): 2200-2207 .
    12. 董元,董梦,单莹. 基于高光谱遥感的树种识别. 华北理工大学学报(自然科学版). 2020(04): 11-16 .
    13. 付晶莹,彭婷,江东,林刚,边鹏,韩昊. 草地资源立体观测研究进展与理论框架. 资源科学. 2020(10): 1932-1943 .
    14. 苏玥. 基于遥感的草地退化研究综述. 内蒙古科技与经济. 2019(06): 53-54+56 .
    15. 查向浩,王玉洁,李有文,王超,莫治新. 草地土壤碳密度研究进展. 北方园艺. 2019(09): 159-163 .
    16. 王云艳,罗冷坤,周志刚. 改进型DeepLab的极化SAR果园分类. 中国图象图形学报. 2019(11): 2035-2044 .
    17. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 .

    Other cited types(9)

Catalog

    Article views (484) PDF downloads (164) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return