Citation: | JIAO Limin, WANG Yu, MA Miao, XU Zhibang. Multi⁃dimensional Characteristics and Pattern Recognition of Urban Form: A Case Study of Natural Cities in China, the United States and Europe[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 1005-1017. DOI: 10.13203/j.whugis20230038 |
Analyzing urban form patterns and their differentiation from a multi-dimensional and large-scale perspective is the basis for studies of urban patterns, processes and effects, but the subject remains a great challenge.
We construct a multi⁃dimensional characterization system of urban form by integrating urban physical space and social space perspectives, which include indices on land use, building distribution, transport network, population distribution and urban function distribution. We further propose a pattern identification method based on principal component analysis and clustering algorithm.
Taking 2 475 natural cities in China, the United States, and Europe as examples, we identify six major urban morphological patterns which include high-density (HD), high-aggregation with low-density (HALD), low-aggregation with low-density (LALD), multi-center with high-concentration (MCHC), multi-center with high-mixed (MCHM) and multi-center with low-mixed (MCLM). Chinese cities are mostly HD cities and MCHC cities, and the distribution of patterns has a significant difference between northwest and southeast areas. In the United States, there are mostly HALD cities, LALD cities and MCLM cities, while showing difference between east and west areas. The cities in Europe are mostly MCHM cities with a few other types of cities along the western and southern coastlines.
Multi⁃dimensional characterization can classify cities into categories in a comprehensive, refined and reasonable way, and urban form patterns can provide support for cross-regional urban comparison studies, urban pattern and process effects, and urban simulation.
[1] |
UN-Habitat. World Cities Report 2022: Envisaging the Future of Cities[R/OL]. (2022-06-29) [2022-10-14]. https://unhabitat.org/wcr/.
|
[2] |
郑德高, 吴浩, 林辰辉, 等. 基于碳核算的城市减碳单元构建与规划技术集成研究[J]. 城市规划学刊, 2021(4): 43-50.
Zheng Degao, Wu Hao, Lin Chenhui, et al. The Formulation of Urban Carbon Reduction Unit and Integrated Planning Methodology Based on Carbon Accounting[J]. Urban Planning Forum, 2021(4): 43-50.
|
[3] |
卢阳, 杨建思, 黄昕, 等. 面向局部气候带的城市形态对地表温度的影响[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1412-1422.
Lu Yang, Yang Jiansi, Huang Xin, et al. Effects of Urban Morphology on Land Surface Temperature in Local Climate Zones[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1412-1422.
|
[4] |
李欣, 周林, 贾涛, 等. 城市因素对COVID-19疫情的影响: 以武汉市为例[J]. 武汉大学学报(信息科学版), 2020, 45(6): 826-835.
Li Xin, Zhou Lin, Jia Tao, et al. Influence of Urban Factors on the COVID-19 Epidemic: A Case Study of Wuhan City[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 826-835.
|
[5] |
周滔, 王笛, 李帆. 多尺度下城市形态对空气质量的作用机制研究[J]. 地理研究, 2022, 41(7): 1883-1897.
Zhou Tao, Wang Di, Li Fan. The Effect and Mechanism of Multi-scale Urban Forms on Air Quality[J]. Geographical Research, 2022, 41(7): 1883-1897.
|
[6] |
刘青昊. 城市形态的生态机制[J]. 城市规划, 1995, 19(2): 20-22.
Liu Qinghao. Ecological Mechanism of Urban Form[J]. City Planning Review, 1995, 19(2): 20-22.
|
[7] |
郑莘, 林琳. 1990年以来国内城市形态研究述评[J]. 城市规划, 2002, 26(7): 59-64.
Zheng Xin, Lin Lin. A Review of Studies on the Urban Morphology Since 1990s[J]. City Planning Review, 2002, 26(7): 59-64.
|
[8] |
苏毓德. 台北市道路系统发展对城市外部形状演变的影响[J]. 东南大学学报, 1997, 27(3): 46-51.
Su Yude. Research on the Impact on Street System Forwards Urban Morphology in Taipei, China[J]. Journal of Southeast University, 1997, 27(3): 46-51.
|
[9] |
王宁. 组合型城市形态分析: 以浙江省台州市为例[J]. 经济地理, 1996, 16(2): 32-37.
Wang Ning. Morphological Analysis of Combined Cities ─ A Case Study of Taizhou City, Zhejiang Province[J]. Economic Geography, 1996, 16(2): 32-37.
|
[10] |
武进. 中国城市形态: 结构、特征及其演变[M]. 南京: 江苏科学技术出版社, 1990.
Wu Jin. Urban Form of China: Structure, Characteristics and Evolution[M]. Nanjing: Phoenix Science Press, 1990.
|
[11] |
Lan T, Shao G F, Xu Z B, et al. Measuring Urban Compactness Based on Functional Characterization and Human Activity Intensity by Integrating Multiple Geospatial Data Sources[J]. Ecological Indicators, 2021, 121: 107177.
|
[12] |
Fritz J. Deutsche Stadtanlagen[M]. Strassburg: Heitz, 1894.
|
[13] |
方创琳, 祁巍锋. 紧凑城市理念与测度研究进展及思考[J]. 城市规划学刊, 2007(4): 65-73.
Fang Chuanglin, Qi Weifeng. Research Progress and Thinking of Compact City and Its Measurement Methods[J]. Urban Planning Forum, 2007(4): 65-73.
|
[14] |
Schneider A, Woodcock C E. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth in Twenty-five Global Cities Using Remotely Sensed Data, Pattern Metrics and Census Information[J]. Urban Studies, 2008, 45(3): 659-692.
|
[15] |
Hofstad H. Compact City Development: High Ideals and Emerging Practices[J]. European Journal of Spatial Development, 2012, 10(5): 1-23.
|
[16] |
Liu M, Hu Y M, Li C L. Landscape Metrics for Three-dimensional Urban Building Pattern Recognition[J]. Applied Geography, 2017, 87: 66-72.
|
[17] |
Wu Q, Guo F X, Li H Q, et al. Measuring Landscape Pattern in Three Dimensional Space[J]. Landscape and Urban Planning, 2017, 167: 49-59.
|
[18] |
董鉴泓. 关于中国传统城市规划理念的一些探讨[J]. 城市规划汇刊, 1997(5): 4-7.
Dong Jianhong. Probe into Chinese Traditional Urban Planning Thoughts[J]. Urban Planning Review, 1997(5): 4-7.
|
[19] |
陈彦光, 刘继生. 城市土地利用结构和形态的定量描述: 从信息熵到分数维[J]. 地理研究, 2001, 20(2): 146-152.
Chen Yanguang, Liu Jisheng. An Index of Equilibrium of Urban Landuse Structure and Information Dimension of Urban Form[J]. Geographical Research, 2001, 20(2): 146-152.
|
[20] |
邬建国. 景观生态学: 概念与理论[J]. 生态学杂志, 2000, 19(1): 42-52.
Wu Jianguo. Landscape Ecology-Concepts and Theories[J]. Chinese Journal of Ecology, 2000, 19(1): 42-52.
|
[21] |
Lemoine-Rodríguez R, Inostroza L, Zepp H. The Global Homogenization of Urban Form. An Assessment of 194 Cities Across Time[J]. Landscape and Urban Planning, 2020, 204: 103949.
|
[22] |
Huang J N, Lu X X, Sellers J M. A Global Comparative Analysis of Urban Form: Applying Spatial Metrics and Remote Sensing[J]. Landscape and Urban Planning, 2007, 82(4): 184-197.
|
[23] |
Taubenböck H, Debray H, Qiu C, et al. Seven City Types Representing Morphologic Configurations of Cities Across the Globe[J]. Cities, 2020, 105: 102814.
|
[24] |
Güneralp B, Reba M, Hales B U, et al. Trends in Urban Land Expansion, Density, and Land Transitions from 1970 to 2010: A Global Synthesis[J]. Environmental Research Letters, 2020, 15(4): 044015.
|
[25] |
Thomas I, Jones J, Caruso G, et al. City Delineation in European Applications of LUTI Models: Review and Tests[J]. Transport Reviews, 2018, 38(1): 6-32.
|
[26] |
Parr J B. Spatial Definitions of the City: Four Perspectives[J]. Urban Studies, 2007, 44(2): 381-392.
|
[27] |
徐智邦, 焦利民, 王玉. 1988—2018年中国城市实体地域与行政地域用地扩张对比[J]. 地理学报, 2022, 77(10): 2514-2528.
Xu Zhibang, Jiao Limin, Wang Yu. Comparison of Urban Land Expansion Between Urban Physical and Administrative Areas in China from 1988 to 2018[J]. Acta Geographica Sinica, 2022, 77(10): 2514-2528.
|
[28] |
Xu Z B, Jiao L M, Lan T, et al. Mapping Hierarchical Urban Boundaries for Global Urban Settlements[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103: 102480.
|
[29] |
Li M M, Koks E, Taubenböck H, et al. Continental-scale Mapping and Analysis of 3D Building Structure[J]. Remote Sensing of Environment, 2020, 245: 111859.
|
[30] |
Bourne L S. Internal Structure of the City: Readings on Urban Form, Growth, and Policy[M]. New York: Oxford University Press, 1982.
|
[31] |
Xu Z X, Cai Z L, Su S L, et al. Unraveling the Association Between the Urban Polycentric Structure and Urban Surface Thermal Environment in Urbanizing China[J]. Sustainable Cities and Society, 2022, 76: 103490.
|
[32] |
池娇, 焦利民, 董婷, 等. 基于POI数据的城市功能区定量识别及其可视化[J]. 测绘地理信息, 2016, 41(2): 68-73.
Chi Jiao, Jiao Limin, Dong Ting, et al. Quantitative Identification and Visualization of Urban Functional Area Based on POI Data[J]. Journal of Geomatics, 2016, 41(2): 68-73.
|
[33] |
Jiang B. A Recursive Definition of Goodness of Space for Bridging the Concepts of Space and Place for Sustainability[J]. Sustainability, 2019, 11(15): 4091.
|
[34] |
孙林, 刘梦含, 徐久成. 基于优化初始聚类中心和轮廓系数的K-means聚类算法[J]. 模糊系统与数学, 2022, 36(1): 47-65.
Sun Lin, Liu Menghan, Xu Jiucheng. K-means Clustering Algorithm Using Optimal Initial Clustering Center and Contour Coefficient[J]. Fuzzy Systems and Mathematics, 2022, 36(1): 47-65.
|
[35] |
杨成术. 基于多源遥感数据的城市物理空间与社会经济发展耦合关系研究[D]. 上海: 华东师范大学, 2021.
Yang Chengshu. Coupling Relationship Between Urban Spatial and Socio-Economic Development with Multi-source Remote Sensing Data[D]. Shanghai: East China Normal University, 2021.
|
[36] |
涂伟, 曹劲舟, 高琦丽, 等. 融合多源时空大数据感知城市动态[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1875-1883.
Tu Wei, Cao Jinzhou, Gao Qili, et al. Sensing Urban Dynamics by Fusing Multi-sourced Spatiotemporal Big Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1875-1883.
|
[1] | YANG Renfei. Research on Multi-level Classification and Change Detection Using Remote Sensing Images for Urban Wetland[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2105-2105. DOI: 10.13203/j.whugis20230130 |
[2] | WANG Zhipan, SHEN Yan, WANG Liang, ZHANG Qingling, YOU Shucheng. High-Resolution Remote Sensing Image Building Change Detection Based on One-Class Classifier Framework[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1610-1618. DOI: 10.13203/j.whugis20180485 |
[3] | LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294 |
[4] | YANG Lamei, JIA Yonghong. A Method for Determining the Natural Boundary of Seasonal Saltwater Lake Wetland with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 419-425. DOI: 10.13203/j.whugis20180207 |
[5] | LI Peng, LI Dahui, LI Zhenhong, WANG Houjie. Wetland Classification Through Integration of GF-3 SAR and Sentinel-2B Multispectral Data over the Yellow River Delta[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1641-1649. DOI: 10.13203/j.whugis20180258 |
[6] | FENG Wenqing, ZHANG Yongjun. Object-oriented Change Detection for Remote Sensing Images Based on Fuzzy Comprehensive Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 875-881. DOI: 10.13203/j.whugis20140291 |
[7] | CHEN Jianqun, WU Xie, WANG Zhenxing, ZHU Jianjun. Establishment of Fundamental Geographic Information System and Associated Key Technologies for Poyang Lake Wetland[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 888-891. |
[8] | GONG Hao, ZHANG Jingxiong, SHEN Shaohong. Object-Based Correspondence Analysis for Improved Accuracy in Remote Sensing Change Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 544-547. |
[9] | ZHANG Jianqing, SHE Qiong, PAN Li. Change Detection of Residential Area by Remote Sensing Image Based on LBP/C Texture[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 7-11. |
[10] | ZHANG Xiaodong, LI Deren, GONG Jianya, QIN Qianqing. A Change Detection Method of Integrating Remote Sensing and GIS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 266-269. |