Citation: | XIE Jian, ZHOU Cui, LIN Dongfang, LONG Sichun, LAI Xiangen. Optimal Selection of the Adjustment Principles for Structured Weighted Total Least Squares Model[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2223-2231. DOI: 10.13203/j.whugis20220745 |
In the structured errors-in-variables (EIV) model encountered in spatial coordinate transformation, part of the random observations (or their negative values) in the coefficient matrix appear repeatedly in different positions. Whether the repetitions of the random errors should be taken into account and how to deal with the repetitions in the adjustment principle, no consensus has been reached up to now.
A generalized structured EIV model is proposed and a synthetic weight is introduced to describe different adjustment principles. The generalized EIV model is transformed to the Gauss-Helmert model through linear approximation. The solution and its approximate variance are derived.
It is verified that the repetitions should not be taken into consideration in the adjustment principle from the aspects of model analysis and numerical simulation.
The optimal adjustment principle is confirmed and the approximate formula to calculate the accuracy is proved to be feasible and effective.
[1] |
Fang X. Weighted Total Least Squares: Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8): 733-749.
|
[2] |
姚宜斌, 黄书华, 张良, 等. 求解三维坐标转换参数的整体最小二乘新方法[J]. 武汉大学学报(信息科学版), 2015, 40(7): 853-857.
Yao Yibin, Huang Shuhua, Zhang Liang, et al. A New Method of TLS for Solving the Parameters of Three-Dimensional Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 853-857.
|
[3] |
姚宜斌, 熊朝晖, 张豹, 等. 顾及设计矩阵误差的AR模型新解法[J]. 测绘学报, 2017, 46(11): 1795-1801.
Yao Yibin, Xiong Zhaohui, Zhang Bao, et al. A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1795-1801.
|
[4] |
姚宜斌, 黄书华, 张良, 等. 求解三维坐标转换参数的整体最小二乘新方法[J]. 武汉大学学报(信息科学版), 2015, 40(7): 853-857.
Yao Yibin, Huang Shuhua, Zhang Liang, et al. A New Method of TLS for Solving the Parameters of Three-Dimensional Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 853-857.
|
[5] |
Aoki M, Yue P. On a Priori Error Estimates of some Identification Methods[J]. IEEE Transactions on Automatic Control, 1970, 15(5): 541-548.
|
[6] |
de Moor B. Structured Total Least Squares and L2 Approximation Problems[J]. Linear Algebra and Its Applications, 1993, 188:163-205.
|
[7] |
Abatzoglou T J, Mendel J M, Harada G A. The Constrained Total Least Squares Technique and Its Applications to Harmonic Superresolution [J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1070-1087.
|
[8] |
Akyilmaz O. Total Least Squares Solution of Coordinate Transformation[J]. Survey Review, 2007, 39(303): 68-80.
|
[9] |
Zhou Y, Fang X. A Mixed Weighted Least Squares and Weighted Total Least Squares Adjustment Method and Its Geodetic Applications[J]. Survey Review, 2016, 48(351): 421-429.
|
[10] |
Xu P L, Liu J N, Shi C. Total Least Squares Adjustment in Partial Errors-in-Variables Models: Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8): 661-675.
|
[11] |
Shi Y, Xu P L, Liu J N, et al. Alternative Formulae for Parameter Estimation in Partial Errors-in-Variables Models[J]. Journal of Geodesy, 2015, 89(1): 13-16.
|
[12] |
Han J, Zhang S L, Li Y L, et al. A General Partial Errors-in-Variables Model and a Corresponding Weighted Total Least-Squares Algorithm[J]. Survey Review, 2020, 52(371): 126-133.
|
[13] |
Fang X. A Structured and Constrained Total Least-Squares Solution with Cross-Covariances[J]. Studia Geophysica et Geodaetica, 2014, 58(1): 1-16.
|
[14] |
Markovsky I, Van Huffel S, Pintelon R. Block-Toeplitz/Hankel Structured Total Least Squares[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 26(4): 1083-1099.
|
[15] |
吕志鹏, 隋立芬. 基于变量投影的结构总体最小二乘算法[J]. 武汉大学学报(信息科学版), 2021, 46(3): 388-394.
Zhipeng Lü, Sui Lifen. Structured Total Least Squares Method Based on Variable Projection[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 388-394.
|
[16] |
Markovsky I, Huffel S V, Kukush A. On the Computation of the Multivariate Structured Total Least Squares Estimator[J]. Numerical Linear Algebra with Applications, 2004, 11(5/6): 591-608.
|
[17] |
Ben Rosen J, Park H, Glick J. Total Least Norm Formulation and Solution for Structured Problems[J]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(1): 110-126.
|
[18] |
Van Huffel S, Park H, Rosen J B. Formulation and Solution of Structured Total Least Norm Problems for Parameter Estimation[J]. IEEE Transactions on Signal Processing, 1996, 44(10): 2464-2474.
|
[19] |
Mastronardi N, Lemmerling P, Van Huffel S. Fast Structured Total Least Squares Algorithm for Solving the Basic Deconvolution Problem[J]. SIAM Journal on Matrix Analysis and Applications, 2000, 22(2): 533-553.
|
[20] |
Lemmerling P, Mastronardi N, Van Huffel S. Fast Algorithm for Solving the Hankel/Toeplitz Structured Total Least Squares Problem[J]. Numerical Algorithms, 2000, 23(4): 371-392.
|
[21] |
Zhang S L, Zhang K, Han J, et al. Total Least Norm Solution for Linear Structured EIV Model[J]. Applied Mathematics and Computation, 2017, 304: 58-64.
|
[22] |
Schaffrin B, Lee I, Choi Y, et al. Total Least-Squares (TLS) for Geodetic Straight-Line and Plane Adjustment[J]. Bollettino Di Geodesia e Scienze Affini, 2006, 65(3): 141-168.
|
[23] |
Neitzel F. Generalization of Total Least-Squares on Example of Unweighted and Weighted 2D Similarity Transformation[J]. Journal of Geodesy, 2010, 84(12): 751-762.
|
[24] |
Shen Y Z, Li B F, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85(4): 229-238.
|
[1] | PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085 |
[2] | YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501 |
[3] | WU Yunlong, LI Hao, ZHANG Fan, PANG Qipei, ZHANG Yi, YAN Jianguo, CHU Risheng. Analysis of Deep Tectonic Characteristics and Seismogenic Environment of the Ms 6.8 Earthquake in Dingri,Xizang,China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20250052 |
[4] | YANG Jiuyuan, XU Caijun. Ramp-flat Seismogenic Structure of the 2020 Yutian (Xinjiang, China) MW 6.3 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240482 |
[5] | LI Zhenhong, HAN Bingquan, LIU Zhenjiang, ZHANG Miaomiao, YU Chen, CHEN Bo, LIU Haihui, DU Jing, ZHANG Shuangcheng, ZHU Wu, ZHANG Qin, PENG Jianbing. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. DOI: 10.13203/j.whugis20220037 |
[6] | LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368 |
[7] | WANG Leyang, LI Haiyan, CHEN Hanqing. Source Parameters and Slip Distribution Inversion of 2013 Lushan Ms 7.0 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 347-354. DOI: 10.13203/j.whugis20160485 |
[8] | XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391. |
[9] | Lin Aiwen. The Research on Fault Structure in the Wuhan Area[J]. Geomatics and Information Science of Wuhan University, 1992, 17(3): 69-76. |
[10] | Guo Qingsheng. Structural Principle and Realization by Computer for Areal Regular Pattern[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 28-33. |