Citation: | WANG Feng, LI Jianqiang, YANG Dongkai, ZHENG Qi, LI Fenghui. Wind Speed Retrieval Using GNSS-R Data from “Jilin-1” Kuanfu-01B Satellite[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 56-67. DOI: 10.13203/j.whugis20220720 |
Spaceborne global navigation satellite system-reflectometry(GNSS-R) has been demonstrated to be effective in retrieving global sea surface wind speed, and many missions have been launched in orbit or planned. “Jilin-1” Kuanfu-01B satellite, as a commercial remote sensing satellite of China, equipped a GNSS-R instrument to observe Earth's physical parameters. This paper aims to preliminarily analyze and demonstrate the effectiveness and feasibility of GNSS-R data from “Jilin-1” Kuanfu-01B satellite for retrieving sea surface wind speed.
Three basic observables sensitive to wind speed, namely the delay-Doppler map (DDM) peak signal-to-noise ratio (SNR), the leading-edge slope and trailing-edge slope of the normalized delay waveform, are extracted from the DDMs of “Jilin-1” Kuanfu-01B satellite, and are used to demonstrate and assess the potential in retrieving wind speed. Three basic observables have obvious inversely proportional relationships with wind speed; therefore, an empirical exponential function is used to develop the geographic model function (GMF) between the basic observables and wind speed. Furthermore, the root mean square error (RMSE) between the retrieved wind speeds and European Centre for Medium-Range Weather Forecasts (ECMWF) data are obtained.
The RMSE of the retrieved wind speed using DDM peak SNR, leading-edge slope and trailing-edge slope are 3.22 m/s, 3.67 m/s and 3.49 m/s without data quality control and data calibration. When SNR is controlled to be larger than -6 dB, the RMSE of the retrieved wind speed using the DDM peak SNR reduces to be within 2 m/s, and the useful data are 78.11 % of that without data quality control. For leading-edge slope and trailing-edge slope, when SNR threshold is -3 dB, the RMSE of retrieved wind speed is also decreased to be within 2 m/s, and the useful data reduce to 53.74 %.
The results show that the GNSS-R data from “Jilin-1” Kuanfu-01B satellite can be used to measure sea surface wind speed. The data used in the paper are uncalibrated, therefore, the retrieved performances are not optimal. It is a key work to calibrate the influence of transmitted power, transmission gain, and propagation path on the DDM.
[1] |
孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5):479-510.
Sun Weiwei, Yang Gang,Chen Chao,et al.Development Status and Literature Analysis of China's Earth Observation Remote Sensing Satellites[J]. Journal of Remote Sensing, 2020, 24(5):479-510.
|
[2] |
李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报 ( 信息科学版), 2017, 42(2): 143-149.
Li Deren, Wang Mi, Shen Xin, et al. From Earth Observation Satellite to Earth Observation Brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 143-149.
|
[3] |
Selva D. A Survey and Assessment of the Capabilities of Cubesats for Earth Observation[J]. Acta Astronautica, 2012, 74: 50-68.
|
[4] |
张毅, 蒋兴伟, 林明森, 等. 星载微波散射计的研究现状及发展趋势[J]. 遥感信息, 2009, 24(6): 87-94.
Zhang Yi, Jiang Xingwei, Lin Mingsen, et al. The Present Research Status and Development Trend of Spacebonre Microwave Scatterometer[J]. Remote Sensing Information, 2009, 24(6): 87-94.
|
[5] |
鲍青柳, 林明森, 张有广, 等. 3维成像微波高度计风速反演[J]. 遥感学报, 2017, 21(6): 835-841.
Bao Qingliu, Lin Mingsen, Zhang Youguang, et al. Wind Speed Inversion for Imaging Microwave Altimeter[J]. Journal of Remote Sensing, 2017, 21(6): 835-841.
|
[6] |
方贺, 蔡菊珍, 何月, 等. 基于RADARSAT-2四极化SAR影像的海面风速反演[J]. 海洋预报, 2021, 38(2):42-54.
Fang He, Cai Juzhen, He Yue, et al. Ocean Surface Wind Speed Retrieve from Radarsat-2 Quad-Polarized SAR Images[J]. Marine Forecasts, 2021, 38(2):42-54.
|
[7] |
张婷, 张杰, 王进, 等. HY-2扫描辐射计风速数据产品与平台基观测数据的比较研究[J]. 海洋科学, 2014, 38(6): 43-46.
Zhang Ting, Zhang Jie, Wang Jin, et al. Comparison of the Seawind Data Obtained by the Scanning Microwave Radiometer Aboard on HY-2 Satellite with Those Obtained with the Platform[J]. Marine Sciences, 2014, 38(6): 43-46.
|
[8] |
马小峰, 林明森, 周武, 等. 新型海洋微波辐射计遥感原理与发展[J]. 海洋环境科学, 2020, 39(4): 622-629.
Ma Xiaofeng, Lin Mingsen, Zhou Wu, et al. Principle and Development of New Microwave Radiometer to Obvserve Ocean[J]. Marine Environmental Science, 2020, 39(4): 622-629.
|
[9] |
Griffiths H D, Baker C J. 无源探测导论[M]. 北京: 国防工业出版社, 2019.
Griffiths H D, Baker C J. An Introduction to Passive Radar[M]. Beijing: National Defense Industry Press, 2019.
|
[10] |
Martín-Neira M. A Pasive Reflectometry and Interferometry System (PARIS) Application to Ocean Altimetry[J]. ESA Journal, 1993, 17(4):331-355.
|
[11] |
杨东凯, 王翔宇, 刘建华, 等. 北斗反射信号海风海浪反演系统与试验[J]. 电子与信息学报, 2019, 41(2):317-323.
Yang Dongkai, Wang Xiangyu, Liu Jianhua, et al. BeiDou-Reflectometry Sea Wind and Wave Retrieval System and Experiment[J]. Journal of Electronics & Information Technology, 2019, 41(2):317-323.
|
[12] |
杨东凯, 刘毅, 王峰. 星载GNSS-R海面风速反演方法研究[J]. 电子与信息学报, 2018, 40(2): 462-469.
Yang Dongkai, Liu Yi, Wang Feng. Ocean Surface Wind Speed Retrieval Using Spaceborne GNSS-R[J]. Journal of Electronics & Information Technology, 2018, 40(2): 462-469.
|
[13] |
Alonso-Arroyo A, Camps A, Park H, et al. Retrieval of Significant Wave Height and Mean Sea Surface Level Using the GNSS-R Interference Pattern Technique: Results from a Three-Month Field Campaign[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3198-3209.
|
[14] |
Li W Q, Cardellach E, Fabra F, et al. Assessment of Spaceborne GNSS-R Ocean Altimetry Performance Using CYGNSS Mission Raw Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 238-250.
|
[15] |
张国栋, 郭健, 杨东凯, 等. 星载GNSS-R海冰边界探测方法[J]. 武汉大学学报(信息科学版), 2019, 44(5): 668-674.
Zhang Guodong, Guo Jian, Yang Dongkai, et al. Sea Ice Edge Detection Using Spaceborne GNSS-R Signal[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 668-674.
|
[16] |
高洪兴, 杨东凯, 张波, 等. 基于GNSS卫星反射信号的海冰厚度探测[J]. 电子与信息学报, 2017, 39(5):1096-1100.
Gao Hongxing, Yang Dongkai, Zhang Bo, et al. Remote Sensing of Sea Ice Thickness with GNSS Reflected Signal[J]. Journal of Electronics & Information Technology, 2017, 39(5):1096-1100.
|
[17] |
梁勇, 杨磊, 吴秋兰, 等. 地表粗糙度影响下的GNSS-R土壤湿度反演仿真分析[J]. 武汉大学学报(信息科学版), 2018, 43(10): 1546-1552.
Liang Yong, Yang Lei, Wu Qiulan, et al. Simulation of Soil Roughness Impact in GNSS-R Soil Moisture Retrieval[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1546-1552.
|
[18] |
Guo Fei, Chen Weijie, Zhu Yifan, et al. A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency[J]. Geomatics and Information Science of Wuhan University, 2022,DOI:10.13203/j.whugis20210644. (郭斐, 陈惟杰, 朱逸凡, 等. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报(信息科学版), 2022,DOI:10.13203/j.whugis20210644.)
|
[19] |
Lowe S T, LaBrecque J L, Zuffada C, et al. First Spaceborne Observation of an Earth-Reflected GPS Signal[J]. Radio Science, 2002, 37(1): 7-1.
|
[20] |
GleasonS. Remote Sensing of Ocean, Ice and Land Surfaces Using Bistatically Scattered GNSS Signals from Low Earth Orbit[D]. Guildford: University of Surrey, 2006.
|
[21] |
Clarizia M P, Gommenginger C P, Gleason S T, et al. Analysis of GNSS-R Delay-Doppler Maps from the UK-DMC Satellite over the Ocean[J]. Geophysical Research Letters, 2009, 36(2): L02608.
|
[22] |
Unwin M, Jales P, Tye J, et al. Spaceborne GNSS-Reflectometry on TechDemoSat-1: Early Mission Operations and Exploitation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4525-4539.
|
[23] |
RufC S, GleasonS, JelenakZ, et al. The CYGNSS Nanosatellite Constellation Hurricane Mission[C]//IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany,2012.
|
[24] |
Al-Khaldi M M, Katzberg S J, Johnson J T, et al. Matched Filter Cyclone Maximum Wind Retrievals Using CYGNSS: Progress Update and Error Analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3591-3601.
|
[25] |
Foti G, Gommenginger C, Srokosz M. First Spaceborne GNSS-Reflectometry Observations of Hurricanes from the UK TechDemoSat-1 Mission[J]. Geophysical Research Letters, 2017, 44(24): 358-366.
|
[26] |
Carreno-Luengo H, Crespo J A, Akbar R, et al. The CYGNSS Mission: On-going Science Team Investigations[J]. Remote Sensing, 2021, 13(9): 1814.
|
[27] |
Rodriguez-Alvarez N, Misra S, Morris M. The Polarimetric Sensitivity of SMAP-Reflectometry Signals to Crop Growth in the U.S. Corn Belt[J]. Remote Sensing, 2020, 12(6): 1007.
|
[28] |
Munoz-Martin J F, Fernandez L, Perez A, et al. In-orbit Validation of the FMPL-2 Instrument—The GNSS-R and L-Band Microwave Radiometer Payload of the FSSCat Mission[J]. Remote Sensing, 2020, 13(1): 121.
|
[29] |
Jing C, Niu X L, Duan C D, et al. Sea Surface Wind Speed Retrieval from the First Chinese GNSS-R Mission: Technique and Preliminary Results[J]. Remote Sensing, 2019, 11(24): 3013.
|
[30] |
SunY Q, WangX Y, DuQ F, et al. The Status and Progress of Fengyun-3e GNOS II Mission for GNSS Remote Sensing[C]// IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.
|
[31] |
Li W Q, Cardellach E, Ribó S, et al. First Spaceborne Demonstration of BeiDou-3 Signals for GNSS Reflectometry from CYGNSS Constellation[J]. Chinese Journal of Aeronautics, 2021, 34(9): 1-10.
|
[32] |
Hammond M L, Foti G, Rawlinson J, et al. First Assessment of Geophysical Sensitivities from Spaceborne Galileo and BeiDou GNSS-Reflectometry Data Collected by the UK TechDemoSat-1 Mission[J]. Remote Sensing, 2020, 12(18): 2927.
|
[33] |
Wickert J, Cardellach E, Martín-Neira M, et al. GEROS-ISS: GNSS REflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4552-4581.
|
[34] |
Olivé R, Amézaga A, Carreno-Luengo H, et al. Implementation of a GNSS-R Payload Based on Software-Defined Radio for the 3Cat-2 Mission[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4824-4833.
|
[35] |
Ruiz-de-AzuaJ A, MuñozJ F, FernándezL, et al. 3Cat-4 Mission: A 1-unit CubeSat for Earth Observation with a L-band Radiometer and a GNSS-Reflectometer Using Software Defined Radio[C]// IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.
|
[36] |
Cardellach E, Wickert J, Baggen R, et al. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept[J]. IEEE Access, 2018, 6: 13980-14018.
|
[37] |
周勃, 秦瑾, 姚崇斌, 等. 星载相控阵GNSS-R测高系统设计与实验[J]. 上海航天, 2018, 35(2):110-120.
Zhou Bo, Qin Jin, Yao Chongbin, et al. Space-borne GNSS-R Altimeter System Design and Field Experiment[J]. Aerospace Shanghai, 2018, 35(2):110-120.
|
[38] |
JuangJ C, TsaiY F, LinC T. FORMOSAT-7R Mission for GNSS Reflectometry[C]// IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.
|
[39] |
Tsai Y F, Yeh W H, Juang J C, et al. From GPS Receiver to GNSS Reflectometry Payload Development for the Triton Satellite Mission[J]. Remote Sensing, 2021, 13(5): 999.
|
[40] |
Nguyen V A, Nogués-Correig O, Yuasa T, et al. Initial GNSS Phase Altimetry Measurements from the Spire Satellite Constellation[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088308.
|
[41] |
Rodriguez-Alvarez N, Akos D M, Zavorotny V U, et al. Airborne GNSS-R Wind Retrievals Using Delay–Doppler Maps[J]. IEEE Transactions on Geoscience and Remote Sensing,2013, 51(1): 626-641.
|
[42] |
杨东凯, 张其善. GNSS反射信号处理基础与实践[M]. 北京: 电子工业出版社, 2012.
Yang Dongkai, Zhang Qishan. GNSS Reflected Signal Processing: Fundamentals and Applications[M]. Beijing: Publishing House of Electronics Industry, 2012.
|
[43] |
Wang F. Waveform-Based Spaceborne GNSS-R Wind Speed Observation: Demonstration and Analysis Using UK TechDemoSat-1 Data[J]. Advances in Space Research, 2018, 61(6): 1573-1587.
|
[44] |
Clarizia M P, Ruf C S, Jales P, et al. Spaceborne GNSS-R Minimum Variance Wind Speed Estimator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6829-6843.
|
[45] |
Hajj G A, Zuffada C. Theoretical Description of a Bistatic System for Ocean Altimetry Using the GPS Signal[J]. Radio Science, 2003, 38(5): 10.
|
[46] |
Balasubramaniam R, Ruf C. Neural Network Based Quality Control of CYGNSS Wind Retrieval[J]. Remote Sensing, 2020, 12(17): 2859.
|
[47] |
Li X H . Analysis of Coastal Wind Speed Retrieval from CYGNSS Mission Using Artificial Neural Network[J]. Remote Sensing of Environment, 2021, 260: 112454.
|
[48] |
Gleason S, Ruf C S, Clarizia M P, et al. Calibration and Unwrapping of the Normalized Scattering Cross Section for the Cyclone Global Navigation Satellite System[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2495-2509.
|
[49] |
JalesP. Spaceborne Receiver Design for Scatterometric GNSS Reflectometry[D]. Guildford: University of Surrey, 2012.
|
[1] | YE Shirong, LUO Xinqi, NAN Yang, XIA Pengfei. An Improved Sea Ice Detection Method Based on Spaceborne GNSS-R Using CNN[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 90-99. DOI: 10.13203/j.whugis20220585 |
[2] | ZHANG Shuangcheng, GUO Qinyu, MA Zhongmin, LIU Qi, HU Shengwei, ZHOU Xin, ZHAO Hebin. Research Advances and Some Thoughts on Soil Moisture Retrieval by Space-Borne GNSS-R[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 15-26. DOI: 10.13203/j.whugis20230100 |
[3] | DU Hao, GUO Wenfei, GUO Chi, LU Pengyuan, YE Shirong. Adaptively CDF Matching Method in GNSS-R Wind Speed Retrieval[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1924-1931. DOI: 10.13203/j.whugis20210253 |
[4] | ZHANG Guodong, GUO Jian, YANG Dongkai, WANG Feng, GAO Hongxing. Sea Ice Edge Detection Using Spaceborne GNSS-R Signal[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 668-674. DOI: 10.13203/j.whugis20170050 |
[5] | LIANG Yong, YANG Lei, WU Qiulan, HONG Xuebao, HAN Moutian, YANG Dongkai. Simulation of Soil Roughness Impact in GNSS-R Soil Moisture Retrieval[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1546-1552. DOI: 10.13203/j.whugis20160557 |
[6] | LU Yong, YANG Dongkai, XIONG Huagang, LI Weiqiang. Study of Ocean Wind-field Monitoring System Based on GNSS-R[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 470-473. |
[7] | SHAO Lianjun, ZHANG Xunxie, WANG Xin, SUN Qiang. Sea Surface Wave Height Retrieve Using GNSS-R Signals[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 475-478. |
[8] | ZHOU Zhaoming, FU Yang. Bohai GNSS-R Aircraft Experiment and the Retrieve of Sea Surface Wind[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3): 241-244. |
[9] | LIU Jingnan, SHAO Lianjun, ZHANG Xunxie. Advances in GNSS-R Studies and Key Technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 955-960. |
[10] | FU Yang, ZHOU Zhaoming. Investigation of Ocean Remote Sensing by Using GNSS-R Signal[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 128-131. |