Citation: | MENG Nina, WANG Zhengyang, GAO Chenbo, LI Jinqiu. A Vector Building Clustering Algorithm Based on Local Outlier Factor[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 562-571. DOI: 10.13203/j.whugis20220688 |
The mining of building cluster features in topographic maps is of great significance to realize automatic cartographic synthesis and spatial knowledge mining, but it is difficult to identify building polygon communities with different distribution densities and morphological characteristics in cities.
A clustering method combining local outlier factor (LOF) is proposed. Based on the adjacency map of buildings, feature vectors are constructed according to the differences of form factors and proximity distances between adjacent buildings. LOF algorithm is used to dynamically calculate the anomaly degree of feature vectors and eliminate the abnormal vectors. And the building cluster is obtained.
By adjusting the upper limit of LOF local anomaly factor and proximity number, the final clustering results are obtained. The experimental results show that the proposed method can effectively identify and distinguish densely distributed building groups in the city.
We provide a new way to solve the clustering problem of urban dense buildings, verify the importance of Gestalt criteria, and the clustering results are consistent with human visual cognition.
[1] |
王家耀, 钱海忠. 制图综合知识及其应用[J]. 武汉大学学报(信息科学版), 2006, 31(5): 382-386.
Wang Jiayao, Qian Haizhong. Cartographic-Genera‑lization-Knowledge and Its Application[J].Geomatics and Information Science of Wuhan University, 2006, 31(5): 382-386.
|
[2] |
Wang X, Burghardt D. A Mesh-Based Typification Method for Building Groups with Grid Patterns[J]. ISPRS International Journal of Geo-Information, 2019, 8(4): 168.
|
[3] |
宋昊璘, 杨敏华. 基于中心点距离的居民地面要素聚类[J]. 测绘与空间地理信息, 2020, 43(4): 154-157.
Song Haolin, Yang Minhua. Polygon Clustering of Settlements Based on the Distance of Center Point[J]. Geomatics and Spatial Information Technology, 2020, 43(4): 154-157.
|
[4] |
吕峥, 孙群, 赵国成,等. 顾及方向关系的农村居民地聚类方法[J]. 武汉大学学报(信息科学版), 2023, 48(4): 631-638.
Zheng Lü, Sun Qun, Zhao Guocheng,et al. A Clustering Method of Rural Settlement Considering Direction Relation[J].Geomatics and Information Scien‑ce of Wuhan University, 2023, 48(4): 631-638.
|
[5] |
钟吉, 钱海忠, 王骁, 等. 顾及多特征的散列式居民地SOM聚类选取算法[J]. 测绘科学技术学报, 2020, 37(6): 643-651.
Zhong Ji, Qian Haizhong, Wang Xiao, et al. SOM Clustering Selection Algorithm of Hash-Style Settlements Considering Multiple Characters[J]. Journal of Geomatics Science and Technology, 2020, 37(6): 643-651.
|
[6] |
Labetski A,Vitalis S, Biljecki F, et al. 3D Building Metrics for Urban Morphology[J]. International Journal of Geographical Information Science, 2023, 37(1): 36-67.
|
[7] |
Li Z,Yan H,Ai T,et al. Automated Building Gene‑ralization Based on Urban Morphology and Gestalt Theory[J]. International Journal of Geographical Information Science, 2004, 18(5): 513-534.
|
[8] |
Zhang L Q, Deng H, Chen D, et al. A Spatial Cognition-Based Urban Building Clustering Approach and Its Applications[J]. International Journal of Geographical Information Science, 2013, 27(4): 721-740.
|
[9] |
Wei Z W, Guo Q S, Wang L, et al. On the Spatial Distribution of Buildings for Map Generalization[J]. Cartography and Geographic Information Science, 2018, 45(6): 539-555.
|
[10] |
Yan X F, Ai T H, Yang M, et al. A Graph Deep Learning Approach for Urban Building Grouping[J]. Geocarto International, 2022, 37(10): 2944-2966.
|
[11] |
孟妮娜, 高晨博, 王正阳, 等. 面向建筑物数据的密度聚类算法研究[J]. 测绘科学, 2022, 47(11): 204-214.
Meng Nina, Gao Chenbo, Wang Zhengyang, et al. Comparative Study on Clustering Adaptability of DBSCAN Extended Algorithmin Planar Buildings[J]. Science of Surveying and Mapping, 2022, 47(11): 204-214.
|
[12] |
艾廷华, 郭仁忠. 基于格式塔识别原则挖掘空间分布模式[J]. 测绘学报, 2007, 36(3): 302-308.
Ai Tinghua, Guo Renzhong. Polygon Cluster Pattern Mining Based on Gestalt Principles[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3): 302-308.
|
[13] |
闫浩文, 应申, 李霖. 多因子影响的地图居民地自动聚群与综合研究[J]. 武汉大学学报(信息科学版), 2008, 33(1): 51-54.
Yan Haowen, Ying Shen, Li Lin. An Approach for Automated Building Grouping and Generalization Considering Multiple Parameters[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 51-54.
|
[14] |
邓敏, 孙前虎, 文小岳, 等. 建筑物层次空间聚类方法研究[J]. 计算机工程与应用, 2011, 47(28): 120-123.
Deng Min,Sun Qianhu, Wen Xiaoyue, et al. Hierarchical Spatial Clustering of Buildings[J]. Computer Engineering and Applications, 2011, 47(28): 120-123.
|
[15] |
孟妮娜, 冯建华, 贾钰涵. 面状居民地聚类方法的对比分析[J]. 测绘地理信息, 2023, 48(3): 116-120.
Meng Nina, Feng Jianhua, Jia Yuhan. Comparative Analysis of Clustering Methods of Planar Settlements[J]. Journal of Geomatics, 2023, 48(3): 116-120.
|
[16] |
Çalışkan O, Mashhoodi B, Akay M. Morphological Indicators of the Building Fabric: Towards a Metric Typomorphology[J]. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 2022(1): 1-30.
|
[17] |
程绵绵, 孙群, 李少梅, 等. 顾及密度对比的多层次聚类点群选取方法[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1131-1137.
Cheng Mianmian, Sun Qun, Li Shaomei, et al. A Point Group Selecting Method Using Multi-level Clustering Considering Density Comparison[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1131-1137.
|
[18] |
段佩祥, 钱海忠, 何海威, 等. 一种基于动态多尺度聚类的湖泊选取方法[J]. 武汉大学学报(信息科学版), 2019, 44(10): 1567-1574.
Duan Peixiang, Qian Haizhong, He Haiwei, et al. A Lake Selection Method Based on Dynamic Multi-scale Clustering[J].Geomatics and Information Scien‑ce of Wuhan University, 2019, 44(10): 1567-1574.
|
[19] |
Pilehforooshha P, Karimi M. A Local Adaptive Density-Based Algorithm for Clustering Polygonal Buildings in Urban Block Polygons[J]. Geocarto International, 2020, 35(2): 141-167.
|
[20] |
巩现勇, 方圆. 居民地聚类分析算法适应性对比研究[J]. 测绘工程, 2020, 29(5): 1-7.
Gong Xianyong, Fang Yuan. Comparative Study of Settlement Cluster Analysis Algorithms[J]. Engineering of Surveying and Mapping, 2020, 29(5): 1-7.
|
[21] |
吕峥, 孙群, 赵国成, 等. 顾及方向关系的农村居民地聚类方法[J]. 武汉大学学报(信息科学版), 2023, 48(4): 631-638.
Zheng Lü, Sun Qun, Zhao Guocheng, et al. Clustering Method of Rural Settlement Considering Direction Relation[J].Geomatics and Information Scien‑ce of Wuhan University, 2023, 48(4): 631-638.
|
[22] |
Cheng Z Y, Zou C M, Dong J W. Outlier Detection Using Isolation Forest and Local Outlier Factor[C]//The Conference on Research in Adaptive and Convergent Systems, Chongqing, China, 2019.
|
[23] |
张秀红, 陈迪, 刘纪平, 等. 结构化居民地群的多层次识别方法[J]. 武汉大学学报(信息科学版), 2018, 43(8): 1144-1151.
Zhang Xiuhong, Chen Di, Liu Jiping, et al. A Multilevel Identification Approach to Structured Building Clusters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1144-1151.
|
[24] |
Steiniger S, Lange T, Burghardt D, et al. An Approach for the Classification of Urban Building Structures Based on Discriminant Analysis Techniques[J]. Transactions in GIS, 2008, 12(1): 31-59.
|
[25] |
Maceachren A M. Compactness of Geographic Shape: Comparison and Evaluation of Measures[J]. Geografiska Annaler: Series B, Human Geography, 1985, 67(1): 53-67.
|
[26] |
刘慧敏, 邓敏, 樊子德, 等. 地图上居民地空间信息的特征度量法[J]. 测绘学报, 2014, 43(10): 1092-1098.
Liu Huimin, Deng Min, Fan Zide, et al. A Characteristics-based Approach to Measuring Spatial Information Content of the Settlements in a Map[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10): 1092-1098.
|
[27] |
薛安荣, 鞠时光, 何伟华, 等. 局部离群点挖掘算法研究[J]. 计算机学报, 2007, 30(8): 1455-1463.
Xue Anrong, Ju Shiguang, He Weihua, et al. Study on Algorithms for Local Outlier Detection[J]. Chinese Journal of Computers, 2007, 30(8): 1455-1463.
|
[28] |
朱强生, 何华灿, 周延泉. 谱聚类算法对输入数据顺序的敏感性[J]. 计算机应用研究, 2007, 24(4): 62-63.
Zhu Qiangsheng, He Huacan, Zhou Yanquan. Order Sensibility of Spectral Clustering on Input Data Sets[J]. Application Research of Computers, 2007, 24(4): 62-63.
|
[29] |
Huang R R, Cheng Q S, Chen Z Q. An Algorithm of Data Classification Based on PCA and K-Means[C]//IEEE Conference on Telecommunications, Optics and Computer Science,Shenyang,China, 2021.
|
[30] |
王军华, 李建军, 李俊山, 等. 自适应快速搜索密度峰值聚类算法[J]. 计算机工程与应用, 2019, 55(24): 122-127.
Wang Junhua, Li Jianjun, Li Junshan, et al. Adaptive Fast Search Density Peak Clustering Algorithm[J]. Computer Engineering and Applications, 2019, 55(24): 122-127.
|
[31] |
颜金彪, 郑文武, 段晓旗, 等. 改进的最小生成树自适应空间点聚类算法[J]. 地球信息科学学报, 2018, 20(7): 887-894.
Yan Jinbiao, Zheng Wenwu, Duan Xiaoqi, et al. Improved Adaptive Spatial Points Clustering Algorithm Based on Minimum Spanning Tree[J]. Journal of Geo-Information Science, 2018, 20(7): 887-894.
|
[32] |
Peter R J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis[J]. Journal of Computational & Applied Mathematics, 1987, 20: 53-65.
|
[33] |
Liu X Y, Huang Q Y, Gao S. Exploring the Uncertainty of Activity Zone Detection Using Digital Footprints with Multi-scaled DBSCAN[J].International Journal of Geographical Information Science, 2019, 33(6): 1196-1223.
|