WANG Xin, FANG Chengyong, TANG Xiaochuan, DAI Lanxin, FAN Xuanmei, XU Qiang. Research on Emergency Evaluation of Landslides Induced by the Luding Ms 6.8 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 25-35. DOI: 10.13203/j.whugis20220586
Citation: WANG Xin, FANG Chengyong, TANG Xiaochuan, DAI Lanxin, FAN Xuanmei, XU Qiang. Research on Emergency Evaluation of Landslides Induced by the Luding Ms 6.8 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 25-35. DOI: 10.13203/j.whugis20220586

Research on Emergency Evaluation of Landslides Induced by the Luding Ms 6.8 Earthquake

More Information
  • Received Date: September 14, 2022
  • Available Online: September 16, 2022
  • Published Date: January 04, 2023
  •   Objectives  On 5th September 2022, an Ms 6.8 earthquake struck the Luding County, Ganzi Prefecture, Sichuan Province, China. This earthquake triggered extensive geological hazards in the mountainous area, leading to serious casualties. Rapidly and accurately obtaining the spatial distribution of the induced geological hazards is crucial for emergency decision-making and rescue after an earthquake.
      Methods  Based on the global coseismic landslide database and deep learning algorithm, this paper built a near real-time prediction model of spatial distribution probability of coseismic landslides, and obtained the prediction results of the geological hazards induced by the Luding earthquake within 2 hours after the event. Through the post-earthquake unmanned aerial vehicle(UAV)and satellite remote sensing images, machine learning and deep learning algorithms were used to realize the automated recognition of large-scale geological hazards. A total of 3 633 earthquake-induced landslides with an area of 13.78 km2 were interpreted. Finally, the model was optimized by integrating these landslide data, and the prediction results of coseismic landslides with a broader area and higher accuracy were achieved.
      Results  The results show that the coseismic landslide prediction model can realize a rapid capture of spatial distribution of post-earthquake geological hazards, filling the blank period before the acquisition of post-earthquake remote sensing images and providing support for post-disaster emergency rescue.
      Conclusions  Intelligent identification technologies based on UAV and satellite remote sensing images are effective means to rapidly obtain the vital information of large-scale geological hazards. The achievements obtained in this paper played an important role in the emergency rescue after the Luding earthquake.
  • [1]
    邓起东, 张培震, 冉勇康, 等. 中国活动构造与地震活动[J]. 地学前缘, 2003, 10(S1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1011.htm

    Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Active Tectonics and Earthquake Activities in China[J]. Earth Science Frontiers, 2003, 10(S1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1011.htm
    [2]
    邓起东, 程绍平, 马冀, 等. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 2014, 57(7): 2025-2042. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201407001.htm

    Deng Qidong, Cheng Shaoping, Ma Ji, et al. Seismic Activities and Earthquake Potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2014, 57(7): 2025-2042. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201407001.htm
    [3]
    许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 2013, 21(1): 25-44. doi: 10.3969/j.issn.1004-9665.2013.01.004

    Xu Chong, Xu Xiwei, Wu Xiyan, et al. Detailed Catalog of Landslides Triggered by the 2008 Wenchuan Earthquake and Statistical Analyses of Their Spatial Distribution[J]. Journal of Engineering Geology, 2013, 21(1): 25-44. doi: 10.3969/j.issn.1004-9665.2013.01.004
    [4]
    殷跃平, 张永双, 马寅生, 等. 青海玉树Ms 7.1级地震地质灾害主要特征[J]. 工程地质学报, 2010, 18(3): 289-296. doi: 10.3969/j.issn.1004-9665.2010.03.001

    Yin Yueping, Zhang Yongshuang, Ma Yinsheng, et al. Research on Major Characteristics of Geohazards Induced by the Yushu Ms 7.1 Earthquake[J]. Journal of Engineering Geology, 2010, 18(3): 289-296. doi: 10.3969/j.issn.1004-9665.2010.03.001
    [5]
    戴岚欣, 许强, 范宣梅, 等. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报, 2017, 25(4): 1151-1164. doi: 10.13544/j.cnki.jeg.2017.04.030

    Dai Lanxin, Xu Qiang, Fan Xuanmei, et al. A Preliminary Study on Spatial Distribution Patterns of Landslides Triggered by Jiuzhaigou Earthquake in Sichuan on August 8th, 2017 and Their Susceptibility Assessment[J]. Journal of Engineering Geology, 2017, 25(4): 1151-1164. doi: 10.13544/j.cnki.jeg.2017.04.030
    [6]
    范宣梅, 方成勇, 戴岚欣, 等. 地震诱发滑坡空间分布概率近实时预测研究: 以2022年6月1日四川芦山地震为例[J]. 工程地质学报, 2022, 30(3): 729-739. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203012.htm

    Fan Xuanmei, Fang Chengyong, Dai Lanxin, et al. Near Real Time Prediction of Spatial Distribution Probability of Earthquake-Induced Landslides—Take the Lushan Earthquake on June 1, 2022 as an Example[J]. Journal of Engineering Geology, 2022, 30(3): 729-739. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203012.htm
    [7]
    Yin Y P, Wang F W, Sun P. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China[J]. Landslides, 2009, 6(2): 139-152. doi: 10.1007/s10346-009-0148-5
    [8]
    Huang R Q, Fan X M. The Landslide Story[J]. Nature Geoscience, 2013, 6(5): 325-326. doi: 10.1038/ngeo1806
    [9]
    Xu M, Rhee S Y. Becoming Data-Savvy in a Big-Data World[J]. Trends in Plant Science, 2014, 19(10): 619-622. doi: 10.1016/j.tplants.2014.08.003
    [10]
    殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001

    Yin Yueping. Researches on the Geo-hazards Triggered by Wenchuan Earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001
    [11]
    黄润秋, 李为乐. "5.12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    Huang Runqiu, Li Weile. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
    [12]
    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7): 957-966. doi: 10.13203/j.whugis20190088

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. doi: 10.13203/j.whugis20190088
    [13]
    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7): 967-979. doi: 10.13203/j.whugis20190098

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. doi: 10.13203/j.whugis20190098
    [14]
    Booth A M, Lamb M P, Avouac J P, et al. Landslide Velocity, Thickness, and Rheology from Remote Sensing: La Clapière Landslide, France[J]. Geophysical Research Letters, 2013, 40(16): 4299-4304. doi: 10.1002/grl.50828
    [15]
    Mantovani F, Soeters R, van Westen C J. Remote Sensing Techniques for Landslide Studies and Hazard Zonation in Europe[J]. Geomorphology, 1996, 15(3/4): 213-225.
    [16]
    Li Z B, Shi W Z, Lu P, et al. Landslide Mapping from Aerial Photographs Using Change Detection-Based Markov Random Field[J]. Remote Sensing of Environment, 2016, 187: 76-90. doi: 10.1016/j.rse.2016.10.008
    [17]
    Lu P, Shi W, Wang Q, et al. Co-seismic Landslide Mapping Using Sentinel-2 10-m Fused NIR Narrow, Red-Edge, and SWIR Bands[J]. Landslides, 2021, 18(6): 2017-2037. doi: 10.1007/s10346-021-01636-2
    [18]
    Martha T R, Kerle N, van Westen C J, et al. Segment Optimization and Data-Driven Thresholding for Knowledge-Based Landslide Detection by Object-Based Image Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4928-4943. doi: 10.1109/TGRS.2011.2151866
    [19]
    王敏杰, 李天斌, 孟陆波, 等. 四川"Y字形"断裂交汇部应力场反演分析[J]. 铁道科学与工程学报, 2015, 12(5): 1088-1095. doi: 10.3969/j.issn.1672-7029.2015.05.016

    Wang Minjie, Li Tianbin, Meng Lubo, et al. Back Analysis of Stress Field in the Intersection Region of Y Shaped Fault, Sichuan[J]. Journal of Railway Science and Engineering, 2015, 12(5): 1088-1095. doi: 10.3969/j.issn.1672-7029.2015.05.016
    [20]
    徐晶, 邵志刚, 马宏生, 等. 鲜水河断裂带库仑应力演化与强震间关系[J]. 地球物理学报, 2013, 56(4): 1146-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304012.htm

    Xu Jing, Shao Zhigang, Ma Hongsheng, et al. Evolution of Coulomb Stress and Stress Interaction Among Strong Earthquakes Along the Xianshuihe Fault Zone[J]. Chinese Journal of Geophysics, 2013, 56(4): 1146-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304012.htm
    [21]
    吴萍萍, 李振, 李大虎, 等. 基于ANSYS接触单元模型的鲜水河断裂带库仑应力演化数值模拟[J]. 地球物理学进展, 2014, 29(5): 2084-2091. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405014.htm

    Wu Pingping, Li Zhen, Li Dahu, et al. Numerical Simulation of Stress Evolution on Xianshuihe Fault Based on Contact Element Model[J]. Progress in Geophysics, 2014, 29(5): 2084-2091. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405014.htm
    [22]
    熊维, 谭凯, 余鹏飞, 等. 鲜水河断裂近期库仑应力演化及其与康定Mw 5.9地震的关系[J]. 大地测量与地球动力学, 2016, 36(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201602001.htm

    Xiong Wei, Tan Kai, Yu Pengfei, et al. Triggering of Mw 5.9 Kangding Earthquake by Coulomb Stress Evolution Along Xianshuihe Fault Zone Since 1955[J]. Journal of Geodesy and Geodynamics, 2016, 36(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201602001.htm
    [23]
    Chen X L, Liu C G, Wang M M, et al. Causes of Unusual Distribution of Coseismic Landslides Triggered by the Mw 6.1 2014 Ludian, Yunnan, China Earthquake[J]. Journal of Asian Earth Sciences, 2018, 159: 17-23. doi: 10.1016/j.jseaes.2018.03.010
    [24]
    Fan X M, Xu Q, Scaringi G, et al. The "Long" Runout Rock Avalanche in Pusa, China, on August 28, 2017: A Preliminary Report[J]. Landslides, 2019, 16(1): 139-154. doi: 10.1007/s10346-018-1084-z
    [25]
    Hu K H, Zhang X P, You Y, et al. Landslides and Dammed Lakes Triggered by the 2017 Ms 6.9 Milin Earthquake in the Tsangpo Gorge[J]. Landslides, 2019, 16(5): 993-1001. doi: 10.1007/s10346-019-01168-w
    [26]
    Li G, West A J, Densmore A L, et al. Seismic Mountain Building: Landslides Associated with the 2008 Wenchuan Earthquake in the Context of a Generalized Model for Earthquake Volume Balance[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 833-844. doi: 10.1002/2013GC005067
    [27]
    Xu C, Xu X W, Shyu J B H. Database and Spatial Distribution of Landslides Triggered by the Lushan, China Mw 6.6 Earthquake of 20 April 2013[J]. Geomorphology, 2015, 248: 77-92. doi: 10.1016/j.geomorph.2015.07.002
    [28]
    Li S J, Xiong L Y, Tang G A, et al. Deep Learning-Based Approach for Landform Classification from Integrated Data Sources of Digital Elevation Model and Imagery[J]. Geomorphology, 2020, 354: 107045. doi: 10.1016/j.geomorph.2020.107045
    [29]
    Tang X, Tu Z, Wang Y, et al. Automatic Detection of Coseismic Landslides Using a New Transformer Method[J]. Remote Sensing, 2022, 14(12): 2884. doi: 10.3390/rs14122884
    [30]
    Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale[J]. arXiv Preprint, 2020, arXiv: 2010.11929.
    [31]
    Xie E Z, Wang W H, Yu Z D, et al. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090.
    [32]
    Wang X, Fan X M, Xu Q, et al. Change Detection-Based Co-Seismic Landslide Mapping Through Extended Morphological Profiles and Ensemble Strategy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 225-239. doi: 10.1016/j.isprsjprs.2022.03.011
    [33]
    Loshchilov I, Hutter F. Decoupled Weight Decay Regularization[J]. arXiv Preprint, 2017, arXiv: 1711.05101.
  • Related Articles

    [1]WANG Mengqi, LI Bozhao, WANG Zhenli, LIU Songcao, LIAO Cheng, CAI Zhongliang. An Automatic Cartography Framework Integrating Knowledge Graph and Large Language Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240266
    [2]ZHU Jun, LAI Jianbo, XIE Yakun, CHEN Peijing, SUN Wenjin. Knowledge-Guided Spatiotemporal Narrative 3D Visualization Method for the Bridge Construction Process[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1650-1660. DOI: 10.13203/j.whugis20230239
    [3]WU Jianhua, WEI Ning, ZHANG Yongsheng, ZHANG Yufei, CHEN Yuanyuan, TU Haowen, QIN Kun, LIN Hui. Linguistic-Spatial Intelligence: Opportunities and Challenges of Interdisciplinary Innovation[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240351
    [4]ZHENG Yu. The Knowledge System for Intelligent Cities[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 1-16. DOI: 10.13203/j.whugis20220366
    [5]ZHU Jun, FU Lin, LI Weilian, ZHENG Quanhong, HU Ya, GUO Yukun, HUANG Pengcheng, YANG Li. Knowledge-Guided Dynamic Representation Method of Landslide Disaster Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1255-1262. DOI: 10.13203/j.whugis20200027
    [6]JIANG Jingchao, YU Jie, QIN Chengzhi, LIU Junzhi, LI Runkui, ZHU Liangjun, ZHU Axing. A Knowledge-driven Method for Intelligent Setting of Parameters in Hydrological Modeling[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 525-530. DOI: 10.13203/j.whugis20150044
    [7]ZHU Qing, MIAO Shuangxi, DING Yulin, QI Hua, HE Xiaobo, CAO Zhenyu. Knowledge-guided Gross Errors Detection and Elimination Approach of Landslide Monitoring Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 496-502. DOI: 10.13203/j.whugis20150125
    [8]ZHONG Heping, TIAN Zhen, WU Haoran, ZHANG Sen, TANG Jinsong. Parallel Quality-Guided Phase Unwrapping Algorithm in Shared Memory Environment[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 130-135. DOI: 10.13203/j.whugis20140728
    [9]ZHONG Heping, ZHANG Sen, TIAN Zhen, TANG Jinsong. A Fast Quality-guided Phase Unwrapping Algorithmin Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 756-760. DOI: 10.13203/j.whugis20130518
    [10]HE Yong, SHA Zongyao. Structure of Decision Support System Based on Intelligent Object[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 116-119.
  • Cited by

    Periodical cited type(9)

    1. 任加新,刘万增,陈军,张蓝,陶远,朱秀丽,赵婷婷,李然,翟曦,王海清,周晓光,侯东阳,王勇. 知识引导的碎片化栅格地形图比例尺智能识别. 测绘学报. 2024(01): 146-157 .
    2. 何光强,刘云刚. 总体国家安全观视角下的国家版图安全及其治理. 社会主义研究. 2024(01): 156-164+172 .
    3. 杜清运,况路路,任福,刘江涛,冯昶,陈卓宁,张浡聪,郑康,李智程. 自动驾驶高精度地图特征分析及发展展望. 地球信息科学学报. 2024(01): 15-24 .
    4. 李必军,郭圆,周剑,唐有辰,董全华,李治江. 智能驾驶高精地图发展与展望. 武汉大学学报(信息科学版). 2024(04): 491-505 .
    5. 吴佳桐,狄琳,黄龙. 智能驾驶高精地图数智化审查研究. 测绘通报. 2024(10): 174-178 .
    6. 陈军,王艳慧,武昊,刘万增. 时空信息赋能高质量发展的基本问题与发展方向. 时空信息学报. 2023(01): 1-11 .
    7. 纪银晓. 科技期刊编辑加工过程中常见的“问题地图”及预防措施. 出版与印刷. 2023(04): 97-103 .
    8. 谢富鑫,郭圆,周剑,郭思雨,李必军. 智能汽车高精地图众源更新研究现状. 人工智能. 2023(05): 48-54 .
    9. 蒋树芳,何书金,段宗奇,黄光玉. 一种基于“面-线-点”要素的期刊地图内容有序核查方法. 中国科技期刊研究. 2023(11): 1418-1426 .

    Other cited types(1)

Catalog

    Article views (1772) PDF downloads (305) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return