XU Lianrui, YOU Xiong. A Task-Driven Perspective on Status and Development of Machine Map[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 609-623. DOI: 10.13203/j.whugis20220578
Citation: XU Lianrui, YOU Xiong. A Task-Driven Perspective on Status and Development of Machine Map[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 609-623. DOI: 10.13203/j.whugis20220578

A Task-Driven Perspective on Status and Development of Machine Map

More Information
  • Received Date: December 05, 2022
  • Available Online: January 15, 2023
  • With the continuous promotion of national robot development strategy, machine map, which guarantees robot cognition and learning, has become a new direction of map science research in recent years. To address the lack of theoretical research on machine map, we summarize the key technologies and research status of task-driven machine maps based on the integrated sensing, mapping and decision-making mechanism. Data acquisition and processing are the basic support for map model construction and task application. And the state of robot platform, feature extraction, semantic segmentation and multi-sensor fusion are summarized. Map model construction is the top and bottom. The commonly used map model architecture and its characteristics are analyzed to describe how to build a resilient, robust, and reliable map building system in different task contexts. Task application is the central expression of the functionality of machine maps. The task applications are the concentrated manifestation of the functionalities of machine maps. And the current status of research on typical applications such as path planning, target detection, knowledge representation and reasoning is introduced and summarized. The problems and future development directions of machine map are discussed.

  • [1]
    Rouček T, Pecka M, Čížek P, et al. Darpa Subterranean Challenge: Multi-robotic Exploration of Underground Environments[C]//The 6th International Conference on Modelling and Simulation for Autonomous Systems, Palermo, Italy, 2019.
    [2]
    Young S H, Patel D. Robotics Collaborative Technology Alliance Program Overview[C]//Unmanned Systems Technology ΧΧ, Orlando, USA, 2018.
    [3]
    Wong C C, Wang W W, Lee Y L. Soccer Robot Design for FIRA MiroSot League[C]//IEEE International Conference on Mechatronics, Taipei, China, 2005.
    [4]
    Obdrzalek D. Eurobot Junior and Starter: A Comparison of Two Approaches for Robotic Contest Organization[C]//The 1st Slovak-Austrian International Conference on Robotics in Education, Bratislava, Slovakia, 2010.
    [5]
    Iša J, Dlouhý M. Robotour-Robotika. cz Outdoor Delivery Challenge[C]//The 1st Slovak-Austrian International Conference on Robotics in Education, Bratislava, Slovakia, 2010.
    [6]
    Schneider S, Hegger F, Ahmad A, et al. The Rockin@Home Challenge[C]//The 41st International Symposium on Robotics, Munich, Germany, 2014.
    [7]
    Spurný V, Báča T, Saska M, et al. Cooperative Autonomous Search, Grasping, and Delivering in a Treasure Hunt Scenario by a Team of Unmanned Aerial Vehicles[J]. Journal of Field Robotics, 2019, 36(1): 125-148.
    [8]
    王洪, 艾廷华, 祝国瑞. 电子地图可视化中的自适应策略[J]. 武汉大学学报(信息科学版), 2004, 29(6):525-528.

    Wang Hong, Ai Tinghua, Zhu Guorui. Adaptive Strategy on the Visualization of Electronic Map[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 525-528.
    [9]
    宋莺, 李清泉. 实时交通信息与移动导航电子地图融合表达[J]. 武汉大学学报(信息科学版), 2010, 35(9):1108-1111.

    Song Ying, Li Qingquan. Fusion Expression of Real-Time Traffic Information and Navigation Electronic Map[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1108-1111.
    [10]
    刘经南, 董杨, 詹骄, 等. 自动驾驶地图有关政策的思考和建议[J]. 中国工程科学, 2019, 21(3):92-97.

    Liu Jingnan, Dong Yang, Zhan Jiao, et al. Thoughts and Suggestions on Autonomous Driving Map Policy[J]. Strategic Study of CAE, 2019, 21(3): 92-97.
    [11]
    游雄. 从 VGE 到机器地图:空间认知手段的新发展[C]//地图与空间认知研讨会,中国郑州,2018.

    You Xiong. From VGE to Machine Maps: New Developments in Spatial Cognitive Tools[C]// Seminar on Maps and Spatial Awarenes,Zhengzhou,China,2018.
    [12]
    Nüchter A, Hertzberg J. Towards Semantic Maps for Mobile Robots[J]. Robotics and Autonomous Systems, 2008, 56(11): 915-926.
    [13]
    Lang D, Paulus D. Semantic Maps for Robotics[C]//The Workshop Workshop on AI Robotics at ICRA, Chicago, IL, USA, 2014.
    [14]
    Capobianco R, Gemignani G, Bloisi D D, et al. Automatic Extraction of Structural Representations of Environments[C]//The 13th International Conferen‑ce on Intelligent Autonomous Systems,Padua, Italy, 2016.
    [15]
    Xu J X, Luo Q, Xu K C, et al. An Automated Learning-Based Procedure for Large-Scale Vehicle Dynamics Modeling on Baidu Apollo Platform[C]//International Conference on Intelligent Robots and Systems, Macau, China, 2019.
    [16]
    Childers M A, Lennon C T, Bodt B, et al. US Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance 2014 Capstone Experiment[R]. US Army Research Laboratory Aberdeen Proving Ground United States,Baltimore,USA, 2014.
    [17]
    Oh J, Suppé A, Duvallet F, et al. Toward Mobile Robots Reasoning Like Humans[C]//The Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 2015.
    [18]
    Oh J, Howard T M, Walter M R, et al. Integrated Intelligence for Human-Robot Teams[C]//International Symposium on Experimental Robotics, Tokyo, Japan, 2016.
    [19]
    Williams J, Jiang S, O’Brien M, et al. Online 3D Frontier-Based UGV and UAV Exploration Using Direct Point Cloud Visibility[C]//IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Karlsruhe, Germany, 2020.
    [20]
    Oleynikova H, Taylor Z, Fehr M, et al. Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAVPlanning[C]//International Conferen‑ce on Intelligent Robots and Systems, Vancouver, Canada, 2017.
    [21]
    Thakker R, Alatur N, Fan D D, et al. Autonomous Off-Road Navigation over Extreme Terrains with Perceptually-Challenging Conditions[C]//The 17th International Symposium on Experimental Robotics, Valletta, Malta, 2020.
    [22]
    Tranzatto M, Miki T, Dharmadhikari M, et al. CERBERUS in the DARPA Subterranean Challenge[J]. Science Robotics, 2022, 7(66): 9742.
    [23]
    Lennon C, Bodt B, Childers M, et al. RCTA Capstone Assessment[C]//Unmanned Systems Technology XVII, Baltimore, MD, USA, 2015.
    [24]
    贺勇, 路昊, 王春香, 等. 基于多传感器的车道级高精细地图制作方法[J]. 长安大学学报(自然科学版), 2015, 35(S1):274-278.

    He Yong, Lu Hao, Wang Chunxiang, et al. Generation of Precise Lane-Level Maps Based on Multi-sensors[J]. Journal of Chang’an University(Natural Science Edition), 2015, 35(S1): 274-278.
    [25]
    Xu Y S, Ye Z, Yao W, et al. Classification of LiDAR Point Clouds Using Supervoxel-Based Detrended Feature and Perception-Weighted Graphical Model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1809, 13: 72-88.
    [26]
    Hackel T, Wegner J D, Schindler K. Contour Detection in Unstructured 3D Point Clouds[C]//IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016.
    [27]
    Rusu R B, Blodow N, Beetz M. Fast Point Feature Histograms (FPFH) for 3D Registration[C]// IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009.
    [28]
    Drost B, Ulrich M, Navab N, et al. Model Globally, Match Locally: Efficient and Robust 3D Object Recognition[C]//IEEE Computer Society Conferen‑ce on Computer Vision and Pattern Recognition, San Francisco, USA, 2010.
    [29]
    Kasaei S H, Tomé A M, Seabra Lopes L, et al. GOOD: A Global Orthographic Object Descriptor for 3D Object Recognition and Manipulation[J]. Pattern Recognition Letters, 2016, 83: 312-320.
    [30]
    Rusu R B, Bradski G, Thibaux R, et al. Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram[C]//International Conference on Intelligent Robots and Systems, Taipei, China, 2010.
    [31]
    Lehtomäki M, Jaakkola A, Hyyppä J, et al. Object Classification and Recognition from Mobile Laser Scanning Point Clouds in a Road Environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1226-1239.
    [32]
    Alhamzi K, Elmogy M,Barakat S. 3D Object Recognition Based on Local and Global Features Using Point Cloud Library[J]. International Journal of Advancements in Computing Technology, 2015, 7(3): 43-54.
    [33]
    Chen Y S, Jiang H L, Li C Y, et al. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251.
    [34]
    Dara S, Tumma P.Feature Extraction by Using Deep Learning: A Survey[C]//The Second International Conference on Electronics,Communication and Aerospace Technology,Coimbatore,India, 2018.
    [35]
    石义乐, 杨文忠, 杜慧祥, 等. 基于深度学习的图像描述综述[J]. 电子学报, 2021, 49(10):2048-2060.

    Shi Yile, Yang Wenzhong, Du Huixiang, et al. Overview of Image Captions Based on Deep Learning[J]. Acta Electronica Sinica, 2021, 49(10): 2048-2060.
    [36]
    龙霄潇, 程新景, 朱昊, 等. 三维视觉前沿进展[J]. 中国图象图形学报, 2021, 26(6):1389-1428.

    Long Xiaoxiao, Cheng Xinjing, Zhu Hao, et al. Recent Progress in 3D Vision[J]. Journal of Image and Graphics, 2021, 26(6): 1389-1428.
    [37]
    Feng Y F, Zhang Z Z, Zhao X B, et al. GVCNN: Group-View Convolutional Neural Networks for 3DShape Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018.
    [38]
    Tchapmi L, Choy C, Armeni I, et al. SEGCloud: Semantic Segmentation of 3DPoint Clouds[C]//International Conference on 3D Vision,Qingdao,China, 2017.
    [39]
    Riegler G, Ulusoy A O, Geiger A. OctNet: Learning Deep 3D Representations at High Resolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017.
    [40]
    Li Z, Wang J, Qu X,et al. 3D Point Cloud Segmentation for Complex Structure Based on PointSIFT[C]//The Third Chinese Conference on Pattern Recognition and Computer Vision,Nanjing,China, 2020.
    [41]
    Xie S N, Liu S N, Chen Z Y, et al. Attentional Shape ContextNet for Point Cloud Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018.
    [42]
    Zhao H S, Jiang L, Fu C W, et al. PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing[C]//IEEE Conference on Computer Vision and Pattern Recognition,Long Beach, USA, 2019.
    [43]
    周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251.

    Zhou Feiyan, Jin Linpeng, Dong Jun. Review of Convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
    [44]
    Zhang Z, Wang X, Jung C. DCSR: Dilated Convolutions for Single Image Super-resolution[J]. IEEE Transactions on Image Processing,2018,28(4): 1625-1635.
    [45]
    Dai J F, Qi H Z, Xiong Y W, et al. Deformable Convolutional Networks[C]//IEEE International Conference on Computer Vision,Venice,Italy, 2017.
    [46]
    Wang X L, Girshick R, Gupta A, et al. Non-local Neural Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018.
    [47]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[C]//The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2012.
    [48]
    Szegedy C, Liu W, Jia Y Q, et al. Going Deeper with Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015.
    [49]
    He K M, Zhang X Y, Ren S Q, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conferen‑ce on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016.
    [50]
    Ronneberger O, Fischer P, Brox T. UNet: Convolutional Networks for Biomedical Image Segmentation[C]//The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015.
    [51]
    Mehta S, Rastegari M, Caspi A, et al. EspNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation[C]//European Conference on Computer Vision, Munich, Germany, 2018.
    [52]
    Grilli E, Menna F, Remondino F. A Review of Point Clouds Segmentation and Classification Algorithms[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 42: 339-344.
    [53]
    Wang L, Huang Y C, Hou Y L, et al. Graph Attention Convolution for Point Cloud Semantic Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019.
    [54]
    Xie Y X, Tian J J, Zhu X X. Linking Points with Labels in 3D: A Review of Point Cloud Semantic Segmentation[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 38-59.
    [55]
    Charles R Q, Hao S, Mo K C, et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017.
    [56]
    Qi C R, Yi L, Su H, et al. PointNet++: Deep Hie‑rarchical Feature Learning on Point Sets in a Metric Space[C]//The 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017.
    [57]
    Zhang Y, Zhou Z X, David P, et al. PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020.
    [58]
    Zhu X G, Zhou H, Wang T, et al. Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition,Nashville,USA, 2021.
    [59]
    Hu Q Y, Yang B, Xie L H, et al. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds[C]//IEEE Conference on Computer Vision and Pattern Recognition,Seattle,USA, 2020.
    [60]
    Han W, Wu H, Wen C, et al. BLNet: Bidirectional Learning Network for Point Clouds[J]. Computational Visual Media, 2022, 8(4): 585-596.
    [61]
    吴军, 崔玥, 赵雪梅, 等. SSA-PointNet++: 空间自注意力机制下的3D点云语义分割网络[J]. 计算机辅助设计与图形学学报, 2022, 34(3):437-448.

    Wu Jun, Cui Yue, Zhao Xuemei, et al. SSA-point Net++: A Space Self-attention CNN for the Semantic Segmentation of 3D Point Cloud[J]. Journal of Computer-Aided Design and Computer Graphics, 2022, 34(3): 437-448.
    [62]
    张博, 魏振忠, 张广军. 机器人坐标系与激光跟踪仪坐标系的快速转换方法[J]. 仪器仪表学报, 2010, 31(9):1986-1990.

    Zhang Bo, Wei Zhenzhong, Zhang Guangjun. Rapid Coordinate Transformation Between a Robot and a Laser Tracker[J]. Chinese Journal of Scientific Instrument, 2010, 31(9): 1986-1990.
    [63]
    Alam N, Dempster A G. Cooperative Positioning for Vehicular Networks: Facts and Future[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1708-1717.
    [64]
    Forster C, Carlone L, Dellaert F, et al. On-Manifold Preintegration for Real-Time Visual: Inertial Odometry[J]. IEEE Transactions on Robotics, 2017, 33(1): 1-21.
    [65]
    Jahanchahi C, Mandic D P. A Class of Quaternion Kalman Filters[J]. IEEE Transactions on Neural Networks and Learning Systems,2014,25(3): 533-544.
    [66]
    Bailey T, Nieto J, Guivant J, et al. Consistency of the EKF-SLAM Algorithm[C]//IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006.
    [67]
    Mourikis A I, Roumeliotis S I. A Multi-state Constraint Kalman Filter for Vision-Aided Inertial Navigation[C]//IEEE International Conference on Robotics and Automation, Rome, Italy, 2007.
    [68]
    Zhang J, Singh S. Visual-LiDAR Odometry and Mapping: Low-Drift, Robust, and Fast[C]//IEEE International Conference on Robotics and Automation, Seattle, USA, 2015.
    [69]
    Leutenegger S, Furgale P, Rabaud V, et al. Keyframe-Based Visual-Inertial Slam Using Nonlinear Optimization[C]//Robotis Science and Systems,Berlin, Germany, 2013.
    [70]
    De Tone D, Malisiewicz T, Rabinovich A. SuperPoint: Self-supervised Interest Point Detection and Description[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018.
    [71]
    Maye J, Furgale P, Siegwart R. Self-supervised Calibration for Robotic Systems[C]//IEEE Intelligent Vehicles Symposium,Gold Coast,Australia, 2013.
    [72]
    Kahn G, Abbeel P, Levine S. BADGR: An Autonomous Self-supervised Learning-Based Navigation System[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1312-1319.
    [73]
    Wang X L, Zhang R F, Shen C H, et al. Dense Contrastive Learning for Self-supervised Visual Pre-training[C]//IEEE Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021.
    [74]
    Bender P, Ziegler J, Stiller C. Lanelets: Efficient Map Representation for Autonomous Driving[C]//IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, USA, 2014.
    [75]
    Shimada H, Yamaguchi A, Takada H, et al. Implementation and Evaluation of Local Dynamic Map in Safety Driving Systems[J]. Journal of Transportation Technologies, 2015, 5(2): 102-112.
    [76]
    Poggenhans F,Pauls J H,Janosovits J,et al.Lanelet2: A High Definition Map Framework for the Future of Automated Driving[C]//The 21st International Conference on Intelligent Transportation Systems, Maui, USA, 2018.
    [77]
    Jiang K, Yang D G, Liu C R, et al. A Flexible Multi-layer Map Model Designed for Lane-Level Route Planning in Autonomous Vehicles[J]. Engineering, 2019, 5(2): 305-318.
    [78]
    刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8):939-953.

    Liu Jingnan, Zhan Jiao, Guo Chi, et al. Data Logic Structure and Key Technologies on Intelligent High Precision Map[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 939-953.
    [79]
    Cadena C, Carlone L, Carrillo H, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age[J]. IEEE Transactions on Robotics,2016,32(6): 1309-1332.
    [80]
    Lai K, Bo L F, Fox D. Unsupervised Feature Learning for 3DScene Labeling[C]//IEEE International Conference on Robotics and Automation, Hong Kong, China, 2014.
    [81]
    Kundu A,Li Y,Dellaert F,et al.Joint Semantic Segmentation and 3D Reconstruction from Monocular Video[C]//The 13th European Conference,Zurich, Switzerland, 2014.
    [82]
    Hermans A, Floros G, Leibe B. Dense 3D Semantic Mapping of Indoor Scenes from RGB-D Images[C]//IEEE International Conference on Robotics and Automation, Hong Kong, China, 2014.
    [83]
    Mao M Y, China B U B, Zhang H W, et al. SEMANTIC-RTAB-MAP (SRM): A Semantic SLAM System with CNNS on Depth Images[J]. Mathematical Foundations of Computing, 2019, 2(1): 29-41.
    [84]
    Labbé M, Michaud F. Appearance-Based Loop Closure Detection for Online Large-Scale and Long-Term Operation[J].IEEE Transactions on Robotics, 2013, 29(3): 734-745.
    [85]
    Redmon J,Farhadi A.YOLO9000:Better,Faster, Stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,USA, 2017.
    [86]
    Oberlander J, Uhl K, Zollner J M, et al. A Region-Based SLAM Algorithm Capturing Metric, Topological, and Semantic Properties[C]//IEEE International Conference on Robotics and Automation,Pasadena, USA, 2008.
    [87]
    Xie L H, Markham A, Trigoni N. SnapNav: Learning Mapless Visual Navigation with Sparse Directional Guidance and Visual Reference[C]//IEEE International Conference on Robotics and Automation, Paris, France, 2020.
    [88]
    Bouman A, Ginting M F, Alatur N, et al. Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion[C]//IEEE International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2020.
    [89]
    Li Q, Wang Y, Wang Y L, et al. HDMapNet: An Online HDMap Construction and Evaluation Framework[C]//International Conference on Robotics and Automation, Philadelphia, USA, 2022.
    [90]
    Liu Y, Yuan T, Wang Y, et al. Vectormapnet: End-to-End Vectorized HD Map Learning[C]//International Conference on Machine Learning. PMLR, Honolulu,Hawaii,USA,2023.
    [91]
    Hart P E, Nilsson N J, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
    [92]
    Dorigo M, Birattari M, Stutzle T. Ant Colony Optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39.
    [93]
    Latombe J C. Robot Motion Planning[M]. New York: Springer Science and Business Media, 2012.
    [94]
    Chung T H, Orekhov V, Maio A. Into the Robotic Depths: Analysis and Insights from the DARPA Subterranean Challenge[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6: 477-502.
    [95]
    Girshick R, Donahue J, Darrell T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014.
    [96]
    He K M, Zhang X Y, Ren S Q, et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
    [97]
    Girshick R, Iandola F, Darrell T, et al. Deformable Part Models Are Convolutional Neural Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015.
    [98]
    Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]//The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014.
    [99]
    Hoffman J, Guadarrama S, Tzeng E, et al. LSDA: Large Scale Detection Through Adaptation[C]//The 27th International Conference on Neural Information Processing Systems: Volume 2, Montreal, Canada, 2014.
    [100]
    Tan L, Lv X, Lian X, et al. YOLOv4_Drone: UAV Image Target Detection Based on an Improved YOLOv4 Algorithm[J]. Computers and Electrical Engineering, 2021, 93: 107261.
    [101]
    Meger D, Forssén P E, Lai K, et al. Curious George: An Attentive Semantic Robot[J]. Robotics and Autonomous Systems, 2008, 56(6): 503-511.
    [102]
    Case C, Suresh B, Coates A, et al. Autonomous Sign Reading for Semantic Mapping[C]//IEEE International Conference on Robotics and Automation, Shanghai, China, 2011.
    [103]
    Lim G H, Suh I H, Suh H. Ontology-Based Unified Robot Knowledge for Service Robots in Indoor Environments[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part A: Systems and Humans, 2011, 41(3): 492-509.
    [104]
    Manzoor S, Rocha Y G, Joo S H, et al. Ontology-Based Knowledge Representation in Robotic Systems: A Survey Oriented Toward Applications[J]. Applied Sciences, 2021, 11(10): 4324.
    [105]
    朱晓民. 基于UWB及语义地图的室内移动机器人定位与路径规划关键技术研究[D].上海: 华东理工大学, 2020.

    Zhu Xiaomin. Research on Key Techniques in Positioning and Path Planning of Indoor Mobile Robots Based on UWB and Semantic Map[D].Shanghai: East China University of Science and Technology, 2020.
    [106]
    Tenorth M, Beetz M. KnowRob: A Knowledge Processing Infrastructure for Cognition-Enabled Robots[J]. International Journal of Robotics Research, 2013, 32(5): 566-590.
    [107]
    Tenorth M,Kunze L,Jain D,et al.KNOWROB-MAP-Knowledge-Linked Semantic Object Maps[C]//The 10th IEEE-RAS International Conferen‑ce on Humanoid Robots,Nashville, USA, 2010.
    [108]
    Matuszek C, Herbst E, Zettlemoyer L, et al. Learning to Parse Natural Language Commandsto a Robot Control System[C]//Experimental Robotics: The 13th International Symposium on Experimental Robotics, Québec City, Canada, 2013.
    [109]
    Heintz F. Semantically Grounded Stream Reasoning Integrated with ROS[C]//IEEE International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013.
    [110]
    Viswanathan P, Southey T, Little J, et al. Place Classification Using Visual Object Categorization and Global Information[C]//Canadian Conference on Computer and Robot Vision,St. John's, Canada, 2011.
    [111]
    Kostavelis I, Amanatiadis A, Gasteratos A. How Do You Help a Robot to Find a Place? A Supervised Learning Paradigm to Semantically Infer About Places[C]//The 8th International Conference on Hybrid Artificial Intelligent Systems, Salamanca, Spain, 2013.
    [112]
    Levesque H J. Knowledge Representation and Reasoning[J]. Annual Review of Computer Science, 1986, 1: 255-287.
    [113]
    Sridharan M,Gelfond M,Zhang S Q, et al. REBA: A Refinement-Based Architecture for Knowledge Representation and Reasoning in Robotics[J]. Journal of Artificial Intelligence Research,2019,65: 87-180.
    [114]
    Sadik A, Urban B. An Ontology-Based Approach to Enable Knowledge Representation and Reasoning in Worker-Cobot Agile Manufacturing[J]. Future Internet, 2017, 9(4): 90.
  • Related Articles

    [1]HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
    [2]CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
    [3]LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649
    [4]CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089
    [5]XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630
    [6]HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454.
    [7]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [8]YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914.
    [9]DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171.
    [10]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.

Catalog

    Article views (862) PDF downloads (108) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return