Citation: | SHEN Weihao, ZHONG Yanfei, WANG Junjue, ZHENG Zhuo, MA Ailong. Construction and Application of Flood Disaster Knowledge Graph Based on Multi-modal Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2009-2018. DOI: 10.13203/j.whugis20220509 |
In the process of flood disaster, the observed data is multi-source heterogeneous (remote sensing image, social media text, geographic information data, etc.), which makes it difficult to use complementary advantages to fuse and apply to risk assessment and provide decision-making knowledge. We study the construction method of flood disaster knowledge graph based on multi-modal data. Remote sensing images and social media text knowledge are integrated and extracted to form multi-modal flood disaster knowledge graph.
Based on the top-down method, the domain concept is subdivided and the flood disaster domain ontology layer is constructed. Remote sensing images are intelligently interpreted by deep residual full convolutional neural network, and the image interpretation information is converted into text by geographic inverse coding to realize transformation from image information to text knowledge. Knowledge is extracted from social media textual data based on naming entity recognition and relationship extraction technique. By training word vectors, the semantic similarity is used to calculate the correlation between text knowledge and image knowledge, so as to achieve the unified expression of multi-modal data knowledge.
Taking the flood disaster in Hubei Province, China as an example, the multi-source heterogeneous data are efficiently transformed into knowledge and correlated to form domain knowledge graph, which realizes the transformation from multi-source heterogeneous data to multi-modal knowledge, provides corresponding emergency measures in different periods of disasters, and realizes flood disaster assessment in Hubei Province by associating agricultural disaster area, crop type and crop value.
This method combines deep remote sensing interpretation, text knowledge extraction and semantic similarity calculation to realize transformation from multi-source heterogeneous data to multi-modal knowledge.
[1] |
田国珍, 刘新立, 王平, 等. 中国洪水灾害风险区划及其成因分析[J]. 灾害学, 2006, 21(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200602000.htm
Tian Guozhen, Liu Xinli, Wang Ping, et al. Flood Risk Zoning and Causal Analysis in China[J]. Journal of Catastrophology, 2006, 21(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200602000.htm
|
[2] |
张辉, 许新宜, 张磊, 等. 2000—2010年我国洪涝灾害损失综合评估及其成因分析[J]. 水利经济, 2011, 29(5): 5-9. doi: 10.3969/j.issn.1003-9511.2011.05.002
Zhang Hui, Xu Xinyi, Zhang Lei, et al. Comprehensive Assessment of Loss of Flood and Waterlogging Disasters from 2000 to 2010 and Analysis of Their Causes[J]. Journal of Economics of Water Resources, 2011, 29(5): 5-9. doi: 10.3969/j.issn.1003-9511.2011.05.002
|
[3] |
葛鹏, 岳贤平. 洪涝灾害评估研究综述[J]. 南通大学学报(自然科学版), 2012, 11(4): 68-74. doi: 10.3969/j.issn.1673-2340.2012.04.014
Ge Peng, Yue Xianping. Review on Assessment of Flood and Waterlogging Disaster[J]. Journal of Nantong University (Natural Science Edition), 2012, 11(4): 68-74. doi: 10.3969/j.issn.1673-2340.2012.04.014
|
[4] |
张会, 张继权, 韩俊山. 基于GIS技术的洪涝灾害风险评估与区划研究: 以辽河中下游地区为例[J]. 自然灾害学报, 2005, 14(6): 141-146. doi: 10.3969/j.issn.1004-4574.2005.06.025
Zhang Hui, Zhang Jiquan, Han Junshan. GIS-based Assessment and Zoning of Flood/Waterlogging Disaster Risk: A Case Study on Middle and Lower Reaches of Liaohe River[J]. Journal of Natural Disasters, 2005, 14(6): 141-146. doi: 10.3969/j.issn.1004-4574.2005.06.025
|
[5] |
刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201603009.htm
Liu Qiao, Li Yang, Duan Hong, et al. Knowledge Graph Construction Techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201603009.htm
|
[6] |
徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606. doi: 10.3969/j.issn.1001-0548.2016.04.012
Xu Zenglin, Sheng Yongpan, He Lirong, et al. Review on Knowledge Graph Techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606. doi: 10.3969/j.issn.1001-0548.2016.04.012
|
[7] |
漆桂林, 高桓, 吴天星. 知识图谱研究进展[J]. 情报工程, 2017, 3(1): 4-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QBGC201905010.htm
Qi Guilin, Gao Huan, Wu Tianxing. The Research Advances of Knowledge Graph[J]. Technology Intelligence Engineering, 2017, 3(1): 4-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QBGC201905010.htm
|
[8] |
黄恒琪, 于娟, 廖晓, 等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202207005.htm
Huang Hengqi, Yu Juan, Liao Xiao, et al. Review on Knowledge Graphs[J]. Computer Systems & Applications, 2019, 28(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202207005.htm
|
[9] |
Gruber T R. A Translation Approach to Portable Ontology Specifications[J]. Knowledge Acquisition, 1993, 5(2): 199-220.
|
[10] |
van der Vet P E, Mars N J I. Bottom-up Construction of Ontologies[J]. IEEE Transactions on Knowledge and Data Engineering, 1998, 10(4): 513-526.
|
[11] |
Rodríguez H, Climent S, Vossen P, et al. The Top-Down Strategy for Building EuroWordNet: Vocabulary Coverage, Base Concepts and Top Ontology[M]//Vossen P. EuroWordNet: A Multilingual Database with Lexical Semantic Networks. Dordrecht: Springer, 1998: 45-80.
|
[12] |
Rajman M, Besançon R. Text Mining-Knowledge Extraction from Unstructured Textual Data[M]//Rizzi A, Vichi M, Bock H H. Advances in Data Science and Classification. Berlin, Heidelberg: Springer, 1998: 473-480.
|
[13] |
张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述[J]. 计算机工程, 2022, 48(3): 23-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202203004.htm
Zhang Jixiang, Zhang Xiangsen, Wu Changxu, et al. Survey of Knowledge Graph Construction Techniques[J]. Computer Engineering, 2022, 48(3): 23-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202203004.htm
|
[14] |
张雪英, 张春菊, 吴明光, 等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学: 信息科学, 2020, 50(7): 1019-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202007005.htm
Zhang Xueying, Zhang Chunju, Wu Mingguang, et al. Spatiotemporal Features Based Geographical Knowledge Graph Construction[J]. Scientia Sinica (Informationis), 2020, 50(7): 1019-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202007005.htm
|
[15] |
李彦胜, 张永军. 耦合知识图谱和深度学习的新一代遥感影像解译范式[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1176-1190. doi: 10.13203/j.whugis20210652
Li Yansheng, Zhang Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. doi: 10.13203/j.whugis20210652
|
[16] |
杜志强, 李钰, 张叶廷, 等. 自然灾害应急知识图谱构建方法研究[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1344-1355. doi: 10.13203/j.whugis20200047
Du Zhiqiang, Li Yu, Zhang Yeting, et al. Knowledge Graph Construction Method on Natural Disaster Emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1344-1355. doi: 10.13203/j.whugis20200047
|
[17] |
曾坚, 王倩雯, 郭海沙. 国际关于洪涝灾害风险研究的知识图谱分析及进展评述[J]. 灾害学, 2020, 35(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202002024.htm
Zeng Jian, Wang Qianwen, Guo Haisha. Knowledge Map Analysis and Progress Review of International Research on Flood Disaster Risk[J]. Journal of Catastrophology, 2020, 35(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202002024.htm
|
[18] |
贾诗超, 薛东剑, 李成绕, 等. 基于Sentinel-1数据的水体信息提取方法研究[J]. 人民长江, 2019, 50(2): 213-217. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201902038.htm
Jia Shichao, Xue Dongjian, Li Chengrao, et al. Study on New Method for Water Area Information Extraction Based on Sentinel-1 Data[J]. Yangtze River, 2019, 50(2): 213-217. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201902038.htm
|
[19] |
周昆. 基于规则的命名实体识别研究[D]. 合肥: 合肥工业大学, 2010.
Zhou Kun. Research on Named Entity Recognition Based on Rules[D]. Hefei: Hefei University of Technology, 2010.
|
[20] |
张晓艳, 王挺, 陈火旺. 命名实体识别研究[J]. 计算机科学, 2005, 32(4): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2023S1013.htm
Zhang Xiaoyan, Wang Ting, Chen Huowang. Research on Named Entity Recognition[J]. Computer Science, 2005, 32(4): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2023S1013.htm
|
[21] |
Chang Y, Kong L, Jia K J, et al. Chinese Named Entity Recognition Method Based on BERT[C]//IEEE International Conference on Data Science and Computer Application, Dalian, China, 2021.
|
[22] |
Yu Y Q, Wang Y Z, Mu J Q, et al. Chinese Mineral Named Entity Recognition Based on BERT Model[J]. Expert Systems with Applications, 2022, 206: 117727.
|
[23] |
徐健, 张智雄, 吴振新. 实体关系抽取的技术方法综述[J]. 现代图书情报技术, 2008(8): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XDTQ200808006.htm
Xu Jian, Zhang Zhixiong, Wu Zhenxin. Review on Techniques of Entity Relation Extraction[J]. New Technology of Library and Information Service, 2008(8): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XDTQ200808006.htm
|
[24] |
Church K W. Word2Vec[J]. Natural Language Engineering, 2017, 23(1): 155-162.
|
[25] |
Niwattanakul S, Singthongchai J, Naenudorn E, et al. Using of Jaccard Coefficient for Keywords Similarity[C]//The International Multiconference of Engineers and Computer Scientists, Hong Kong, China, 2013.
|
[26] |
Schwering A. Approaches to Semantic Similarity Measurement for Geo-spatial Data: A Survey[J]. Transactions in GIS, 2008, 12(1): 5-29.
|
[27] |
Shi J, Gao H, Qi G L, et al. Knowledge Graph Embedding with Triple Context[C]//ACM on Conference on Information and Knowledge Management, Singapore, Singapore, 2017.
|
[1] | JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316 |
[2] | LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127 |
[3] | WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491 |
[4] | XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335 |
[5] | JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270 |
[6] | SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159 |
[7] | ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342 |
[8] | GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724. |
[9] | GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241. |
[10] | XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722. |