Citation: | XU Xiaojian, YE Lejia, KANG Zhizhong, JIANG Wenchen, LUAN Dong, ZHANG Dongya. The Identification of Secondary Craters based on the Distribution of Iron Element on Lunar Surface[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200345 |
[1] |
Neal C R. The Moon 35 years after Apollo:What's left to learn?[J]. Chemie Der Erde-geochemistry, 2009, 69(1):3-43
|
[2] |
Ding Xiaozhong, Han Kunying, Han Tonglin, et al. Compilation of the Geological Map of Sinus Iridum Quadrangle of the Moon (LQ-4)[J]. Earth Science Frontiers, 2012, 19(6):15-27(丁孝忠, 韩坤英, 韩同林, 等. 月球虹湾幅(LQ-4)地质图的编制[J]. 地学前缘, 2012, 19(6):15-27)
|
[3] |
Arvidson R E, Boyce J, et al. Standard techniques for presentation and analysis of crater size-frequency data[J]. Icarus, 1979, 37(2):467-474
|
[4] |
Neukum G, Ivanov B A, Hartmann W K. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System[M]//Chronology and Evolution of Mars. Springer Netherlands, 2001
|
[5] |
Korotev R L, Zeigler R A, Jolliff B L, et al. Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentration[J]. Meteoritics & Planetary Science, 2009, 44(9):1287-1322
|
[6] |
Guo Dijun, Liu Jianzhong, Zhang Li, et al. The Method of Lunar Geochronology Study and the Subdivisions of Lunar Geologic History[J]. Earth Science Frontiers, 2014, 21(6):045-061(郭弟均,刘建忠, 张莉, 籍进柱, 刘敬稳, 王梁. 月球地质年代学研究方法及月面历史划分[J].地学前缘,2014,21(6):45-61)
|
[7] |
Neukum G, Konig B, Arkanihamed J, et al. A study of lunar impact crater size-distributions[J]. Earth Moon and Planets, 1975, 12(2):201-229
|
[8] |
Neukum, G., B. Koenig, H. Fechtig, and D. Storzer. Cratering in the Earth-Moon system:Consequences for age determination by crater counting, Proc. Lunar Sci. Conf 6th, 2597-2620, 1975b
|
[9] |
Neukum G. Meteorite bombardment and dating of planetary surfaces[J]. 1984
|
[10] |
Ivanov B A. Mars/Moon Cratering Rate Ratio Estimates[J]. Space Science Reviews, 2001, 96(1-4):87-104
|
[11] |
Hiesinger H, Jaumann R, Neukum G, et al. Ages of mare basalts on the lunar nearside[J]. Journal of Geophysical Research Planets, 2000, 105(E12):29239-29275
|
[12] |
Mcewen A S, Bierhaus E B. The importance of secondary cratering to age constraints on planetary surfaces[J]. Annual Review of Earth & Planetary Sciences, 2006, 34(1):535-567
|
[13] |
Werner S C, Ivanov B A, Neukum G. Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains[J]. Icarus, 2009, 200(2):406-417
|
[14] |
Robbins S J, Hynek B M. The secondary crater population of Mars[J]. Earth & Planetary Science Letters, 2014, 400(400):66-76
|
[15] |
Xiao Z, Strom R G. Problems determining relative and absolute ages using the small crater population[J]. Icarus, 2012, 220(1):254-267
|
[16] |
Bart G D. Lunar surface geology from analysis of impact craters and their ejecta[J]. Dissertations & Theses-Gradworks, 2007
|
[17] |
Li Kun, Liu Jianjun, Mou Lingli, et al. Crater Retention Age Calculation of Lunar Geological Unit Using Small-Scale Craters[J]. Journal of Jilin University(Earth Science Edition), 2012(s2):452-459(李坤, 刘建军, 牟伶俐,等. 利用小型撞击坑测算月球地质单元撞击年龄[J]. 吉林大学学报(地球科学版), 2012(s2):452-459)
|
[18] |
Bierhaus E B, Chapman C R, Merline W J. Secondary craters on Europa and implications for cratered surfaces[J]. Nature, 2005, 437(7062):1125-7
|
[19] |
Michael G, Platz T, Kneissl T, et al. Planetary surface dating from crater size-frequency distribution measurements:Spatial randomness and clustering[J]. Icarus, 2012, 218(1):169-177
|
[20] |
Honda C, Kinoshita T, Hirata N, et al. Detection abilities of secondary craters based on the clustering analysis and Voronoi diagram[C]//European Planetary Science Congress 2014, EPSC Abstracts, Vol. 9, id. EPSC2014-119
|
[21] |
Salih A L, Lompart A, Grumpe A, et al. AUTOMATIC DETECTION OF SECONDARY CRATERS AND MAPPING OF PLANETARY SURFACE AGE BASED ON LUNAR ORBITAL IMAGES[J]. 2017, XLⅡ-3/W1:125-132
|
[22] |
Savage R, Palafox L F, Morrison C T, et al. A Bayesian Approach to Subkilometer Crater Shape Analysis Using Individual HiRISE Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5802-5812
|
[23] |
Guo D, Liu J, Head J W, et al. Lunar Orientale Impact Basin Secondary Craters:Spatial Distribution, Size-Frequency Distribution, and Estimation of Fragment Size[J]. Journal of Geophysical Research, 2018, 123(6):1344-1367
|
[24] |
Lucey P G, Taylor G J, Malaret E R, et al. Abundance and distribution of iron on the moon[J]. Science, 1995, 268(5214):1150-1153
|
[25] |
Antonenko I, Head J W, Mustard J F, et al. Criteria for the detection of lunar cryptomaria[J]. Earth, Moon, and Planets, 1995, 69(2):141-172
|
[26] |
Plescia J B. Lunar Crater Forms on Melt Sheets-Origins and Implications for Self-Secondary Cratering and Chronology[C]. Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, 2015
|
[27] |
Hartmann W K, Neukum G. Cratering Chronology and the Evolution of Mars[J]. Space Science Reviews, 2001, 96(1-4):165-194
|
[28] |
Ivanov, B. A., Neukum, G., & Wagner, R. Size-Frequency Distributions of Planetary Impact Craters and Asteroids[M]. 2001, pp. 1-34
|
[29] |
Greg Michael. Measuring the age of planetary surfaces using crater statistics. Planetary surface dating workshop, 6-7 December 2016
|
[30] |
Hiesinger H, Head J W, Wolf U, et al. Ages and stratigraphy of lunar mare basalts:A synthesis[J]. Special Paper of the Geological Society of America, 2011, 477(2011):1-51
|
[31] |
Pasckert J H, Hiesinger H, Bogert C H V D. Small-scale lunar farside volcanism[J]. Icarus, 2015, 257:336-354
|
[32] |
Gao Huixuan. Statistical Computation[M]. Peking University Press, 1995:173-176(高惠璇. 统计计算[M]. 北京大学出版社, 1995:173-176)
|
[1] | LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462 |
[2] | Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133. |
[3] | FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948. |
[4] | QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99. |
[5] | WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26. |
[6] | LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609. |
[7] | LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998. |
[8] | YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254. |
[9] | P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762. |
[10] | Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345. |