Processing math: 100%
LU Tieding, HE Jinliang, HE Xiaoxing, TAO Rui. GNSS Coordinate Time Series Denoising Method Based on Parameter-Optimized Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1856-1866. DOI: 10.13203/j.whugis20220363
Citation: LU Tieding, HE Jinliang, HE Xiaoxing, TAO Rui. GNSS Coordinate Time Series Denoising Method Based on Parameter-Optimized Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1856-1866. DOI: 10.13203/j.whugis20220363

GNSS Coordinate Time Series Denoising Method Based on Parameter-Optimized Variational Mode Decomposition

More Information
  • Received Date: October 24, 2022
  • Available Online: April 12, 2023
  • Objectives 

    In order to effectively filter out complex noise components in GNSS coordinate time series and extract effective signals, we construct a denoising method based on parameter-optimized variational modal decomposition (VMD).

    Methods 

    First, the combination of permutation entropy and mutual information is used as fitness function, and the optimal parameter combination of the mode decomposition number K and the quadratic penalty factor α of VMD is obtained by using grey wolf optimization algorithm(GWO). Then the GNSS coordinate time series is decomposed into K eigen mode function components by VMD. Finally, the sample entropy is used to determine the effective modal component, which is reconstructed as an effective signal, so as to realize the effective separation of signal and noise.The GWO-VMD method is compared and analyzed with the empirical mode decomposition (EMD), wavelet denoising (WD) and IVMD methods by using the simulated signal and the measured data from 20 reference stations of the crustal movement observation network of China for experiments.

    Results 

    The simulated signal experiments show that the three denoising evaluation indexes of root mean square error,correlation coefficient and signal-to-noise ratio of GWO-VMD denoising signal are better than EMD, WD and IVMD methods. The experiments on the measured data show that the GWO-VMD method can reduce the amplitude of noise significantly. In terms of the velocity uncertainty of the reference station, the overall GWO-VMD method reduces the velocity uncertainty better than the EMD, WD and IVMD methods.

    Conclusions 

    The GWO-VMD method can more effectively remove the noise from GNSS coordinate time series and better preserve the original characteristics of the signal, which can provide reliable data for subsequent analysis and processing.

  • [1]
    Dong D, Fang P, Bock Y, et al. Anatomy of Apparent Seasonal Variations from GPS-Derived Site Position Time Series[J]. Journal of Geophysical Research: Solid Earth, 2002,107:1-16.
    [2]
    Bos M S, Bastos L, Fernandes R. The Influence of Seasonal Signals on the Estimation of the Tectonic Motion in Short Continuous GPS Time-Series[J]. Journal of Geodynamics, 2010, 49(3):205-209.
    [3]
    贺小星,孙喜文,马飞虎,等.随机模型对IGS站速度及其不确定度影响分析[J].测绘科学,2019,44(1):36-41.

    He Xiaoxing, Sun Xiwen, Ma Feihu,et al.Influence of Stochastic Model on IGS Station Velocity and Uncertainty[J].Science of Surveying and Mapping,2019,44(1):36-41.
    [4]
    马俊,曹成度,姜卫平,等.利用小波包系数信息熵去除GNSS站坐标时间序列有色噪声[J].武汉大学学报(信息科学版),2021,46(9):1309-1317.

    Ma Jun, Cao Chengdu, Jiang Weiping, et al. Elimination of Colored Noise in GNSS Station Coordinate Time Series by Using Wavelet Packet Coefficient Information Entropy[J]. Geomatics and Information Science of Wuhan University,2021,46(9):1309-1317.
    [5]
    Ji K, Shen Y, Wang F. Signal Extraction from GNSS Position Time Series Using Weighted Wavelet Analysis[J]. Remote Sensing,2020,12(6): 992.
    [6]
    Chen Q, van Dam T, Sneeuw N, et al. Singular Spectrum Analysis for Modeling Seasonal Signals from GPS Time Series[J].Journal of Geodynamics, 2013, 72: 25-35.
    [7]
    Khazraei S M, Amiri-Simkooei A R. On the Application of Monte Carlo Singular Spectrum Analysis to GPS Position Time Series[J]. Journal of Geodesy, 2019, 93(9): 1401-1418.
    [8]
    张双成,李振宇,何月帆,等.GNSS高程时间序列周期项的经验模态分解提取[J].测绘科学,2018,43(8):80-84.

    Zhang Shuangcheng, Li Zhenyu, He Yuefan, et al. Extracting of Periodic Component of GNSS Vertical Time Series Using EMD[J]. Science of Surveying and Mapping,2018,43(8):80-84.
    [9]
    Qiu X, Wang F, Zhou Y, et al. Weighted Empirical Mode Decomposition for Processing GNSS Position Time Series with the Consideration of Formal Errors[J]. Acta Geodynamica et Geromaterialia, 2021, 18(3): 399-409.
    [10]
    嵇昆浦,沈云中.含缺值GNSS基准站坐标序列的非插值小波分析与信号提取[J].测绘学报,2020,49(5):537-546.

    Ji Kunpu, Shen Yunzhong. Dyadic Wavelet Transform and Signal Extraction of GNSS Coordinate Time Series with Missing Data[J]. Acta Geodaetica et CartographicaSinica,2020,49(5):537-546.
    [11]
    戴海亮,孙付平,姜卫平,等.小波多尺度分解和奇异谱分析在GNSS站坐标时间序列分析中的应用[J].武汉大学学报(信息科学版),2021,46(3):371-380.

    Dai Hailiang, Sun Fuping, Jiang Weiping, et al. Application of Wavelet Decomposition and Singular Spectrum Analysis to GNSS Station Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University,2021,46(3):371-380.
    [12]
    刘希康, 丁志峰, 李媛, 等. EMD在GNSS时间序列周期项处理中的应用[J]. 武汉大学学报(信息科学版), 2023, 48(1): 135-145.

    Liu Xikang, Ding Zhifeng, Li Yuan, et al. Application of EMD to GNSS Time Series Periodic Term Processing[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 135-145.
    [13]
    Wu Z, Huang N E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method[J].Advances in Adaptive Data Analysis,2009,1(1): 1-41
    [14]
    Yeh J R, Shieh J S, Huang N E. Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method[J].Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
    [15]
    Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544.
    [16]
    Xu H, Lu T, Montillet J P, et al. An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series[J]. Sensors, 2021, 21(24): 8295.
    [17]
    罗亦泳,黄城,张静影.基于变分模态分解的变形监测数据去噪方法[J].武汉大学学报(信息科学版),2020,45(5):784-790.

    Luo Yiyong,Huang Cheng,Zhang Jingying.Denoising Method of Deformation Monitoring Data Based on Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University,2020,45(5):784-790.
    [18]
    鲁铁定,谢建雄.变分模态分解结合样本熵的变形监测数据降噪[J].大地测量与地球动力学,2021,41(1):1-6

    Lu Tieding, Xie Jianxiong.Deformation Monitoring Data De-noising Method Based on Variational Mode Decomposition Combined with Sample Entropy[J].Journal of Geodesy and Geodynamics,2021,41(1):1-6
    [19]
    Mirjalili S,Mirjalili S M,Lewis A. Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69(3):46-61.
    [20]
    王进花,胡佳伟,曹洁,等.基于自适应变分模态分解和集成极限学习机的滚动轴承多故障诊断[J].吉林大学学报(工学版),2022,52(2):318-328.

    Wang Jinhua, Hu Jiawei, Cao Jie, et al. Multi-fault Diagnosis of Rolling Bearing Based on Adaptive Variational Modal Decomposition and Integrated Extreme Learning Machine[J]. Journal of Jilin University(Engineering and Technology Edition) ,2022,52(2):318-328.
    [21]
    刘建昌,权贺,于霞,等.基于参数优化VMD和样本熵的滚动轴承故障诊断[J].自动化学报,2022,48(3):808-819.

    Liu Jianchang, Quan He, Yu Xia, et al. Rolling Bearing Fault Diagnosis Based on Parameter Optimization VMD and Sample Entropy[J]. Acta Automatica Sinica,2022,48(3):808-819.
    [22]
    Bandt C, Pompe B. Permutation Entropy: A Natural Complexity Measure for Time Series[J]. Physical Review Letters, 2002, 88(17): 174102.
    [23]
    武小梅,林翔,谢旭泉,等.基于VMD-PE和优化相关向量机的短期风电功率预测[J].太阳能学报,2018,39(11):3277-3285.

    Wu Xiaomei, Lin Xiang, Xie Xuquan, et al. Short-Term Wind Power Forecasting Based on VariationalMode Decomposition-Permutation Entropy and Optimized Relevance Vector Machine [J]. Acta Energiae Solaris Sinica,2018,39(11):3277-3285.
    [24]
    周小龙,刘薇娜,姜振海,等.变分模态分解的Volterra模型和形态学分形维数在发动机故障诊断中的应用[J].汽车工程,2019,41(12):1442-1449.

    Zhou Xiaolong, Liu Weina, Jiang Zhenhai, et al. Application of Volterra Mode of Variational Mode Decomposition and Morphology Fractal Dimension in Engine Fault Diagnosis[J].Automotive Engineering,2019,41(12):1442-1449.
    [25]
    贾瑞生,赵同彬,孙红梅,等.基于经验模态分解及独立成分分析的微震信号降噪方法[J].地球物理学报,2015,58(3):1013-1023.

    Jia Ruisheng, Zhao Tongbin, Sun Hongmei, et al. Micro-seismic Signal Denoising Method Based on Empirical Mode Decomposition and Independent Component Analysis[J]. Chinese Journal of Geophysics,2015,58(3):1013-1023.
    [26]
    蔡晓军,杨建华.基于多通道奇异谱的GNSS坐标序列粗差探测与数据插值[J].测绘工程,2019,28(5):20-28.

    Cai Xiaojun,Yang Jianhua. Gross Error Detection and Data Interpolation for GNSS Coordinates Time Series Based on Multichannel Singular Spectrum[J].Engineering of Surveying and Mapping,2019,28(5):20-28.
    [27]
    Bos M S, Fernandes R M S, Williams S D P, et al. Fast Error Analysis of Continuous GNSS Observations with Missing Data[J]. Journal of Geodesy, 2013, 87(4): 351-360.
    [28]
    贺小星. GPS坐标序列噪声模型估计方法研究[D].武汉: 武汉大学,2016.

    He Xiaoxing. Study on the Noise Model of GPS Coordinates Time Series[D].Wuhan:Wuhan University,2016.
    [29]
    Bos M S, Fernandes R M S, Williams S D P, et al. Fast Error Analysis of Continuous GPS Observations[J]. Journal of Geodesy, 2008, 82(3): 157-166.
  • Related Articles

    [1]ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085
    [2]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [3]KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856
    [4]ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836.
    [5]ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944.
    [6]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [7]HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536.
    [8]CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296.
    [9]DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722.
    [10]ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130.
  • Cited by

    Periodical cited type(28)

    1. 李岚,朱锋,刘万科,张小红. 城市分类场景的GNSS伪距随机模型构建及其定位性能分析. 武汉大学学报(信息科学版). 2025(03): 545-553 .
    2. 苑晓峥,徐爱功,高猛,祝会忠. 基于低成本终端抗差速度约束差分定位算法. 大地测量与地球动力学. 2024(01): 27-34 .
    3. 曲利红,李俊芹. 通用智能技术路线下的人机传播应用. 电视技术. 2024(03): 176-179 .
    4. 刘一,刘敏,边少锋,翟国君,周威. 北斗低成本接收机单频PPP海上定位性能分析. 海洋测绘. 2024(03): 68-72+82 .
    5. 张宝,吴泓正,邸越超,张传定. Android智能手机GNSS定位研究进展. 测绘科学. 2024(05): 1-14 .
    6. 侯雪,张献志,叶远斌. 基于GDCORS的北斗终端高精度定位算法实现及性能分析. 地理空间信息. 2024(08): 72-75 .
    7. 孙俊锋,穆宏波,于先文,廖鹏,吴焱泽. 顾及系统误差影响的智能手机GNSS观测值质量分析. 测绘工程. 2024(05): 43-49 .
    8. 孙俊锋,吴焱泽,于先文,廖鹏,叶嘉宁,曹嘉瑞. 基于北斗的智能手机内河航道高精度定位软件研发. 现代测绘. 2024(03): 13-17 .
    9. 尹昊华,雷博,连宏亮,徐邦岁,曾翔强. 基于安卓智能手机的高精度定位系统研发及测试. 国土资源导刊. 2024(03): 9-17 .
    10. 祝会忠,孙沐凡,李军. GNSS低成本智能终端抗差自适应差分定位算法. 导航定位学报. 2024(06): 10-19 .
    11. 王瑞光,王中元,胡超,王阳阳,刘冰雨. 智能手机BDS-3/GPS数据质量及SPP性能分析. 大地测量与地球动力学. 2023(02): 168-172 .
    12. 孟庆庆,郭德普,胡洁,薄伟伟. 移动GIS在黄委直管河道确权划界中的应用. 水利信息化. 2023(02): 44-49 .
    13. 徐彦田,刘巍峰,李玉星,姜鼎璇. BDS/GPS/GAL智能手机RTK动态定位算法. 无线电工程. 2023(05): 1061-1067 .
    14. 王甫红,栾梦杰,程雨欣,祝浩祈,赵广越,张万威. 城市环境下智能手机车载GNSS/MEMS IMU紧组合定位算法. 武汉大学学报(信息科学版). 2023(07): 1106-1116 .
    15. 郑东,汪梦月,杨中皇. SM3国密算法在Android内核的汇编语言快速实现. 西安邮电大学学报. 2023(03): 57-62 .
    16. 逯遥,聂志喜,王振杰,徐晓飞,张远帆,王翔. 单/双频混合数据的Android手机精密单点定位方法. 测绘科学. 2023(08): 64-71+129 .
    17. 傅鑫榕,王甫红,郭磊,栾梦杰,祝浩祈. 不同电离层模型对智能手机实时PPP精度的影响分析. 测绘地理信息. 2023(06): 26-31 .
    18. 葛在宸,王明华. 基于智能手机GNSS伪距定位的运动距离和速度确定. 江西科学. 2023(06): 1124-1130 .
    19. 邱树素,顾桢,章怿钦,叶俊华. 基于手机内置传感器的相对高程模型. 北京测绘. 2023(12): 1676-1682 .
    20. 董少敏,辛宪会,刘杰,陈文哲,卢为选. 便携式GNSS接收机集成方案及其定位精度分析. 海洋测绘. 2022(03): 56-60 .
    21. 甘露,王志斌,张少波,韩明敏,陈攀,黄威翰. Android智能手机间相对定位性能分析. 测绘工程. 2022(05): 54-60 .
    22. 李阿红. 基于混合神经网络的Android软件缺陷精准预测研究. 自动化与仪器仪表. 2022(08): 33-36+41 .
    23. 张小红,陶贤露,王颖喆,刘万科,朱锋. 城市场景智能手机GNSS/MEMS融合车载高精度定位. 武汉大学学报(信息科学版). 2022(10): 1740-1749 .
    24. 王怡欣,刘晖,钱闯,范潇云. 一种基于智能手机的实时高精度定位系统开发与车载应用测试. 测绘通报. 2022(10): 56-61 .
    25. 曾树林,匡翠林. 智能手机RTK定位软件实现及应用试验. 全球定位系统. 2022(05): 72-80 .
    26. 祝会忠,李骏鹏,李军. 智能手机GNSS多系统多频实时动态定位方法. 测绘科学. 2022(09): 8-19 .
    27. 舒宝,义琛,王利,许豪,田云青. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析. 大地测量与地球动力学. 2022(12): 1222-1226 .
    28. 吴文坛,秘金钟,谷守周. 智能手机广域差分实时定位分析. 测绘科学. 2022(10): 39-44 .

    Other cited types(27)

Catalog

    Article views PDF downloads Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return