ZHENG Mingyang, BEN Jin, ZHOU Jianbin, WANG Rui. Fast Generation Algorithm of Multi‐aperture Hexagonal Grid Systems of Regional‐Scale[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1376-1382. DOI: 10.13203/j.whugis20220342
Citation: ZHENG Mingyang, BEN Jin, ZHOU Jianbin, WANG Rui. Fast Generation Algorithm of Multi‐aperture Hexagonal Grid Systems of Regional‐Scale[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1376-1382. DOI: 10.13203/j.whugis20220342

Fast Generation Algorithm of Multi‐aperture Hexagonal Grid Systems of Regional‐Scale

Funds: 

The National Natural Science Foundation of China 41671410

More Information
  • Author Bio:

    ZHENG Mingyang, master, specializes in discrete global grid system. E-mail: ZMY_DGGS@139.com

  • Corresponding author:

    BEN Jin, PhD, professor. E-mail: benj@lreis.ac.cn

  • Received Date: September 09, 2020
  • Available Online: September 19, 2022
  • Published Date: September 04, 2022
  •   Objectives  The discrete global grid system (DGGS) is a preferred solution in supporting the fusion processing of multi-source geospatial information. The research of hexagonal gird systems has raised wide academic concern. Compared with global grids, the requirements for regional-scale grid application are more extensive, which has been one of the important issues in current hexagonal DGGS research. It combines two adjacent triangle facets of an icosahedron into a logical quad structure, and based on this structure, an algorithm of generating the multi-aperture hexagonal grid systems with regional-scale is proposed.
      Methods  Firstly, the grid type is analyzed to establish a discrete integer coordinate system and the spatial location of the multi-aperture hexagonal grid cell is described. Secondly, the regional-scale is split based on the logical quad structure on the surface of the spherical icosahedron to create sub-areas. Thirdly, according to the boundary of the sub-area, an external minimum logical quad structure algorithm is designed to eliminate irrelevant cells on the logical quad structure. Finally, the minimum logical quad structure is traversed to generate a multi-aperture partial grid.
      Results and Conclusions  The comparative experimental results show that the proposed algorithm has the advantages of better flexibility and higher efficiency.The generated grid is used for the organization of raster data, which can significantly reduce the amount of data and has good application potential.
  • [1]
    贲进, 童晓冲, 周成虎, 等. 正八面体的六边形离散格网系统生成算法[J]. 地球信息科学学报, 2015, 17(7): 789-797 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201507006.htm

    Ben Jin, Tong Xiaochong, Zhou Chenghu, et al. Construction Algorithm of Octahedron Based Hexagon Grid Systems[J]. Journal of Geo - Information Science, 2015, 17(7): 789-797 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201507006.htm
    [2]
    王蕊, 贲进, 杜灵瑀, 等. 正二十面体四孔六边形格网系统编码运算[J]. 武汉大学学报·信息科学版, 2020, 45(1): 89-96 doi: 10.13203/j.whugis20180191

    Wang Rui, Ben Jin, Du Lingyu, et al. Code Operation Scheme for the Icosahedral Aperture 4 Hexagonal Grid System[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 89-96 doi: 10.13203/j.whugis20180191
    [3]
    Sahr K. Hexagonal Discrete Global Grid Systems for Geospatial Computing[J]. Archives of Photogrammetry, Cartography and Remote Sensing, 2011, 22: 363-376
    [4]
    He X J, Jia W J. Hexagonal Structure for Intelligent vision[C]// Information and Communication Technologies, Karachi, Pakistan, 2005
    [5]
    Sahr K. Discrete Global Grid Systems: A New Class of Geospatial Data Structures[D]. Ashland, USA: University of Oregon, 2005
    [6]
    Sahr K. Location Coding on Icosahedral Aperture 3 Hexagon Discrete Global Grids[J]. Computers, Environment and Urban Systems, 2008, 32(3) : 174-187 doi: 10.1016/j.compenvurbsys.2007.11.005
    [7]
    Vince A, Zheng X. Arithmetic and Fourier Transform for the PYXIS Multi-resolution Digital Earth Model[J]. International Journal of Digital Earth, 2009, 2(1): 59-79 doi: 10.1080/17538940802657694
    [8]
    Suess M, Matos P, Gutierrez A, et al. Processing of SMOS Level 1c Data onto a Discrete Global Grid [C]// Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004
    [9]
    Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS Soil Moisture Retrieval Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1384-1403 doi: 10.1109/TGRS.2012.2184548
    [10]
    贲进, 李亚路, 周成虎, 等. 三孔六边形全球离散格网系统代数编码方法[J]. 中国科学, 2018, 48(3): 340-352 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201803007.htm

    Ben Jin, Li Yalu, Zhou Chenghu, et al. Algebraic Encoding Scheme for Aperture 3 Hexagonal Discrete Global Grid System[J]. Scientia Sinica, 2018, 48 (3): 340-352 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201803007.htm
    [11]
    童晓冲, 贲进, 秦志远, 等. 基于全球离散网格框架的局部网格划分[J]. 测绘学报, 2009, 38(6): 506-513 doi: 10.3321/j.issn:1001-1595.2009.06.007

    Tong Xiaochong, Ben Jin, Qin Zhiyuan, et al. The Subdivision of Partial Grid Based on Discrete Global Grid Systems[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(6): 506-513 doi: 10.3321/j.issn:1001-1595.2009.06.007
    [12]
    范帅博, 童晓冲, 雷毅. 基于单元复制的通用化离散格网系统生成算法[J]. 地理信息世界, 2018, 25(2): 60-65 doi: 10.3969/j.issn.1672-1586.2018.02.012

    Fan Shuaibo, Tong Xiaochong, Lei Yi. Universal Discrete Grid System Generation Algorithm Based on Unit Duplication[J]. Geomatics World, 2018, 25(2): 60-65 doi: 10.3969/j.issn.1672-1586.2018.02.012
    [13]
    范帅博. 全球六边形格网可视化方法研究[D]. 郑州: 信息工程大学, 2018

    Fan Shuaibo. Research on Global Hexagonal Grid Visualization[D]. Zhengzhou: Information Engineering University, 2018
    [14]
    Wang R, Ben J, Zhou J, et al. A Generic Encoding and Operation Scheme for Mixed Aperture Three and Four Hexagonal Discrete Global Grid Systems [J]. International Journal of Geographical Information Science, 2021, 35(3): 513-555 doi: 10.1080/13658816.2020.1763363
    [15]
    Wang R, Ben J, Zhou J, et al. Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems[J]. ISPRS International Journal of Geo-Information, 2020, 9(3): 171-191 doi: 10.3390/ijgi9030171
    [16]
    贲进, 童晓冲, 张永生, 等. 对施奈德等积多面体投影的研究[J]. 武汉大学学报·信息科学版, 2006, 31 (10): 900-903 http://ch.whu.edu.cn/article/id/2566

    Ben Jin, Tong Xiaochong, Zhang Yongsheng, et al. Snyder Equal-Area Map Projection for Polyhedral Globes[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 900-903 http://ch.whu.edu.cn/article/id/2566
    [17]
    Snyder J. An Equal-Area Map Projection for Polyhedral Globes[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1992, 29(1): 10-21 doi: 10.3138/27H7-8K88-4882-1752
    [18]
    Sahr K. Central Place Indexing: Hierarchical Linear Indexing Systems for Mixed-Aperture Hexagonal Discrete Global Grid Systems[J]. The International Journal for Geographic Information and Geovisualization, 2019, 54(1): 16-29 doi: 10.3138/cart.54.1.2018-0022
    [19]
    Fisher I. A World Map on a Regular Icosahedron by Gnomonic Projection[J]. Geographical Review, 1943, 33(4): 605-619 doi: 10.2307/209914
  • Related Articles

    [1]HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164
    [2]FENG Qi, CHENG Xuejun, SHEN Xin, XIAO Xiao, WANG Lihui, ZHANG Wen. Inland Riverine Turbidity Estimation for Hanjiang River with Landsat 8 OLI Imager[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 643-647. DOI: 10.13203/j.whugis20141002
    [3]WANG Yuzhuo, LIU Xiuguo, ZHANG Wei. Raster River Networks Extraction Based on Parallel Multiple Flow Direction Algorithms[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1646-1652,1682. DOI: 10.13203/j.whugis20140645
    [4]LI Yuguang, LI Qingquan. A Fast Algorithm for Huge Volume Floating Car Data Map-Matching:A Vector to Raster Map Conversion Approach[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 724-728. DOI: 10.13203/j.whugis20140071
    [5]DONG Jian, PENG Rencan, CHEN Yi, LI Ning. An Algorithm for Centre Line Generation Based on Model of Approaching Intersection of Buffering Borderline from Reciprocal Direction[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1120-1123.
    [6]ZHANG Junfeng, FEI Lifan, HUANG Lina, LIU Yining. Real-Time Dynamic Rendering Algorithm of Terrain Using 3D_DP Method and Quad_TIN Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 346-350.
    [7]LAN Qiuping, FEI Lifan, LIU Yining. An Approach on Calculating Firn Volume Change from Multi-temporal DEMs[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1222-1225.
    [8]HUANG Lina, FEI Lifan. Experimental Investigation on the Three Dimension Generalization of Contour Lines using 3D D-P Algorithm[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 55-58.
    [9]YAN Huiwu, ZHU Guorui, XU Zhiyong, GAO Shan. Volume Rendering and 3D Modeling of Hydrogeologic Layer Based on Kriging Algorithm[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 611-614.
    [10]CHENG Penggen, GONG Jianya, SHI Wenzhong, LIU Shaohua. Geological Object Modeling Based on Quasi Tri-prism Volume and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 602-307.
  • Cited by

    Periodical cited type(17)

    1. 冉烽均,龚川. 基于OpenStreetMap数据的土地利用制图. 北京测绘. 2024(02): 238-244 .
    2. 樊潇. 以建立草原公园为抓手,推动牧区草原转型升级. 中国草食动物科学. 2022(01): 61-64 .
    3. 李霞,潘冬荣,孙斌,姜佳昌,俞慧云,王红霞,杜笑村,吴丹丹. 甘肃省草地退化概况分析——基于甘肃省第一、二次草原普查数据. 草业科学. 2022(03): 485-494 .
    4. 刘志刚,关文昊,何国兴,蒲小鹏,纪童,杨军银,李强,柳小妮. 黄河源5种高寒植物光谱特征分析及识别. 草原与草坪. 2022(04): 23-30 .
    5. 申紫雁,刘昌义,胡夏嵩,周林虎,许桐,李希来,李国荣. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究. 2021(02): 392-401 .
    6. 王俊奇,王广军,梁四海,杜海波,彭红明. 1996—2015年黄河源区植被覆盖度提取和时空变化分析. 冰川冻土. 2021(02): 662-674 .
    7. 朱宁,王浩,宁晓刚,刘娅菲. 草地退化遥感监测研究进展. 测绘科学. 2021(05): 66-76 .
    8. 沈贝贝,侯路路,丁蕾,范蓓蕾,毛平平,徐大伟,闫瑞瑞,辛晓平,陈金强. 数字牧场研究进展浅析. 中国农业信息. 2021(05): 1-11 .
    9. 刘炜,孙海霞,杨晓波. 基于高光谱图像的协同分层波谱识别——以兰州、榆林地区为例. 红外与毫米波学报. 2020(01): 99-110 .
    10. 韩万强,靳瑰丽,岳永寰,王惠宁,宫珂,吴雪儿,吾鲁帕·阿得尔卡里. 伊犁绢蒿荒漠草地3种主要植物光谱及植被指数改进. 新疆农业科学. 2020(05): 950-957 .
    11. 刘炜,孙海霞,杨晓波,董建民. 对数变换、导数变换的高寒草地反射光谱特征分析与识别——以那曲地区HJ-1A/HSI图像为例. 光谱学与光谱分析. 2020(07): 2200-2207 .
    12. 董元,董梦,单莹. 基于高光谱遥感的树种识别. 华北理工大学学报(自然科学版). 2020(04): 11-16 .
    13. 付晶莹,彭婷,江东,林刚,边鹏,韩昊. 草地资源立体观测研究进展与理论框架. 资源科学. 2020(10): 1932-1943 .
    14. 苏玥. 基于遥感的草地退化研究综述. 内蒙古科技与经济. 2019(06): 53-54+56 .
    15. 查向浩,王玉洁,李有文,王超,莫治新. 草地土壤碳密度研究进展. 北方园艺. 2019(09): 159-163 .
    16. 王云艳,罗冷坤,周志刚. 改进型DeepLab的极化SAR果园分类. 中国图象图形学报. 2019(11): 2035-2044 .
    17. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 .

    Other cited types(9)

Catalog

    Article views (742) PDF downloads (82) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return