WANG Danyu, ZHANG Wei, LU Canjiong, LI Wenkai, QIAN Longchun. Construction and Precision Evaluation of Comprehensive Drought Index Based on Meteorological and Remote Sensing Vegetation Information[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1953-1961. DOI: 10.13203/j.whugis20220237
Citation: WANG Danyu, ZHANG Wei, LU Canjiong, LI Wenkai, QIAN Longchun. Construction and Precision Evaluation of Comprehensive Drought Index Based on Meteorological and Remote Sensing Vegetation Information[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1953-1961. DOI: 10.13203/j.whugis20220237

Construction and Precision Evaluation of Comprehensive Drought Index Based on Meteorological and Remote Sensing Vegetation Information

More Information
  • Received Date: October 30, 2022
  • Available Online: December 01, 2022
  • Objectives 

    Accurate monitoring of drought is of great practical significance for agricultural production around the world, and it is beneficial to the sustainable development of an economy. As a vital tool to measure the degree of regional drought, the construction of a comprehensive drought index with high monitoring accuracy is one of the research hotspots nowadays.

    Methods 

    We constructed a new comprehensive drought index meteorology-agriculture drought index(MADI)combined with the normalized differen‑ce vegetation index (NDVI) and monthly mean precipitation based on the Gaussian Copula function. The superiority of MADI in capturing drought events was confirmed by statistical comparison with standardized precipitation index (SPI) and vegetation condition index (VCI) at monthly scale and by testing in historical events.

    Results 

    The research result the research shows that: (1) MADI has high consistency with traditional drought indexes SPI and VCI. The months with a consistent characterization of MADI and SPI accounted for 62.24% of the total months. And the figure is 83.82% taking into account the MADI and VCI. And the months that MADI with either consistent characterization of SPI or VCI to characterize drought accounted for 97.83% of the total months.(2) MADI has high sensitive to capturing drought. In the months when MADI is consistent with SPI and VCI characterization, the absolute value of MADI is greater than that of SPI or VCI in more than 60% of the months, which means that the MADI is clearer in drought characterization. (3) MADI is more accurate in contrast to the record of historical drought events in the meteorologic yearbook. MADI successfully capture two major drought events from January to April 2012 and August to October 2007. However, the SPI and VCI fail to characterize the above events.

    Conclusions 

    Therefore, the MADI can serve as a helpful complement to SPI and VCI since it can provide an auxiliary decision for the accurate judgment of drought disasters in the Yangtze River Basin.

  • [1]
    方向, 林雯, 陶韬. 100年来,全球地表温度上升约1 ℃[N]. 江苏科技报, 2021-08-18 (A12).

    Fang Xiang, Lin Wen, Tao Tao. Over the Past 100 Years, the Global Surface Temperature Has Risen by About1 ℃[N]. Jiangsu Science and Technology News , 2021-08-18(A12).
    [2]
    李夫鹏, 王正涛, 超能芳,等.利用Swarm星群探测亚马孙流域2015—2016年干旱事件[J].武汉大学学报(信息科学版),2020,45(4):595-603.

    Li Fupeng, Wang Zhengtao, Chao Nengfang, et al. 2015—2016 Drought Event in the Amazon River Basin as Measured by Swarm Constellation[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 595-603.
    [3]
    Maity R,Suman M,Verma N K.Drought Prediction Using a Wavelet Based Approach to Model the Temporal Consequences of Different Types of Droughts[J].Journal of Hydrology,2016,539: 417-428.
    [4]
    Venkatappa M, Sasaki N, Han P, et al. Impacts of Droughts and Floods on Croplands and Crop Production in Southeast Asia:An Application of Google Earth Engine[J].The Science of the Total Environment, 2021, 795: 148829.
    [5]
    Abbas S, Kousar S.Spatial Analysis of Drought Severity and Magnitude Using the Standardized Precipitation Index and Streamflow Drought Index over the Upper Indus Basin,Pakistan[J].Environment, Development and Sustainability,2021,23(10): 15314-15340.
    [6]
    Palmer W C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index[J]. Weatherwise, 1968, 21(4): 156-161.
    [7]
    钟玉龙, 钟敏,冯伟,等.联合GRACE重力卫星与实测资料估计西辽河流域蒸散发量[J].武汉大学学报(信息科学版),2020,45(2):173-178.

    Zhong Yulong, Zhong Min, Feng Wei, et al. Evaluation of the Evapotranspiration in the West Liaohe River Basin Based on GRACE Satellite and in Situ Measurements[J].Geomatics and Information Scien‑ce of Wuhan University, 2020, 45(2): 173-178. [7]
    [8]
    Nalbantis I, Tsakiris G. Assessment of Hydrological Drought Revisited[J]. Water Resources Management, 2009, 23(5): 881-897.
    [9]
    李柏贞, 周广胜. 干旱指标研究进展[J]. 生态学报, 2014, 34(5): 1043-1052.

    Li Bozhen, Zhou Guangsheng. Advance in the Study on Drought Index[J]. Acta Ecologica Sinica, 2014, 34(5): 1043-1052.
    [10]
    孙灏, 陈云浩, 孙洪泉. 典型农业干旱遥感监测指数的比较及分类体系[J]. 农业工程学报, 2012, 28(14):147-154.

    Sun Hao, Chen Yunhao, Sun Hongquan. Comparisons and Classification System of Typical RemoteSensing Indexes for Agricultural Drought [J].Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(14): 147-154.
    [11]
    吴志勇, 程丹丹, 何海, 等. 综合干旱指数研究进展[J]. 水资源保护, 2021, 37(1):36-45.

    Wu Zhiyong, Cheng Dandan, He Hai, et al. Research Progress of Composite Drought Index[J]. Water Resources Protection, 2021, 37(1): 36-45.
    [12]
    Zhang A Z, Jia G S. Monitoring Meteorological Drought in Semiarid Regions Using Multi-sensor Microwave Remote Sensing Data[J]. Remote Sensing of Environment, 2013, 134: 12-23.
    [13]
    常文娟,梁忠民,马海波.基于主成分分析的干旱综合指标构建及其应用[J].水文,2017,37(1): 33-38.

    Chang Wenjuan, Liang Zhongmin, Ma Haibo. Construction of Drought Composite Indicator Based on Principal Component Analysis and Its Application[J].Journal of China Hydrology,2017,37(1):33-38.
    [14]
    Liu Y, Zhu Y, Ren L L, et al. On the Mechanisms of Two Composite Methods for Construction of Multivariate Drought Indices[J].The Science of the Total Environment, 2019, 647: 981-991.
    [15]
    Hao Z C, AghaKouchak A. Multivariate Standardized Drought Index: A Parametric Multi-index Model[J].Advances in Water Resources,2013,57: 12-18.
    [16]
    张迎, 黄生志, 黄强, 等. 基于Copula函数的新型综合干旱指数构建与应用[J]. 水利学报, 2018, 49(6):703-714.

    Zhang Ying, Huang Shengzhi, Huang Qiang, et al. Construction and Application of a New Comprehensive Drought Index Based on Copula Function[J]. Journal of Hydraulic Engineering, 2018, 49(6): 703-714.
    [17]
    摆玉龙,李新,韩旭军.陆面数据同化系统误差问题研究综述[J].地球科学进展,2011,26(8): 795-804.

    Bai Yulong, Li Xin, Han Xujun. A Review of Error Problems for Land Data Assimilation Systems[J].Advances in Earth Science, 2011, 26(8): 795-804.
    [18]
    尹航,梁文涛,王文君,等.基于SPI指数的典型荒漠草原地区干旱演变规律研究[J].内蒙古水利,2021(9):8-11.

    Yin Hang,Liang Wentao,Wang Wenjun,et al. Study on Drought Evolution Law in Typical Desert Grassl and Area Based on SPI Index[J]. Inner Mongolia Water Resources,2021(9):8-11.
    [19]
    McKee T B, Doesken N J, Kleist J. The Relationship of Drought Frequency and Duration to Time Scales[C]//The 8th Conference on Applied Climatology, Anaheim, CA,USA, 1993.
    [20]
    李斌, 解建仓, 胡彦华, 等. 基于标准化降水指数的陕西省干旱时空变化特征分析[J]. 农业工程学报, 2017, 33(17):113-119.

    Li Bin, Xie Jiancang, Hu Yanhua, et al. Analysis on Spatiotemporal Variability Characteristics of Drought in Shaanxi Province UsingStandardized Precipitation Index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 113-119.
    [21]
    黄菊梅, 徐志伟, 蔡海朝, 等. 基于标准化降水指数的洞庭湖区干旱特征: 强化科技基础推进气象现代化[C]//第29届中国气象学会年会,中国沈阳, 2012.

    Huang Jumei, Xu Zhiwei, Cai Haicao, et al. Drought Characteristics of Dongting Lake Region Based on Standardized Precipitation Index: Strengthe‑ning Scientific and Technological Foundation and Advancing Meteorological Modernization[C]//The 29th Annual Meeting of Chinese Meteorological Society, Shenyang, China, 2012.
    [22]
    Rouse J, Haas R H, Schell J A, et al. Monitoring Vegetation Systems in the Great Plains with ERTS[J].NASA Special Publication,1974,351(1974):309.
    [23]
    李维娇, 王云鹏. 基于VCI的2003—2017年广东省干旱时空变化特征分析[J]. 华南师范大学学报(自然科学版), 2020, 52(3):85-91.

    Li Weijiao, Wang Yunpeng. An Analysis of the Spatial-Temporal Characteristics of Drought in Guangdong Based on Vegetation Condition Index from 2003 to 2017[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(3): 85-91.
    [24]
    Kogan F N. Remote Sensing of Weather Impacts on Vegetation in Non-homogeneous Areas[J]. International Journal of Remote Sensing, 1990, 11(8): 1405-1419.
    [25]
    沙莎,郭铌,李耀辉,等. 植被状态指数VCI与几种气象干旱指数的对比: 以河南省为例[J]. 冰川冻土, 2013, 35(4):990-998.

    Sha Sha, Guo Ni, Li Yaohui, et al. Comparison of the Vegetation Condition Index with Meteorological Drought Indices: A Case Study in Henan Province[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 990-998.
    [26]
    Sklar A. Random Variables, Joint Distribution Functions, and Copulas[J]. Kybernetika, 1973, 9: 449-460.
    [27]
    Nelsen R B, Quesada-Molina J J, Rodríguez-Lallena J A, et al. On the Construction of Copulas and Quasi-Copulas with Given Diagonal Sections[J]. Insurance: Mathematics and Economics, 2008, 42(2): 473-483.
    [28]
    郭生练, 闫宝伟, 肖义, 等. Copula函数在多变量水文分析计算中的应用及研究进展[J]. 水文, 2008, 28(3): 1-7.

    Guo Shenglian, Yan Baowei, Xiao Yi, et al. Multivariate Hydrological Analysis and Estimation[J].Journal of China Hydrology, 2008, 28(3): 1-7.
    [29]
    李军, 吴旭树, 王兆礼, 等.基于新型综合干旱指数的珠江流域未来干旱变化特征研究[J].水利学报,2021, 52(4):486-497.

    Li Jun, Wu Xushu, Wang Zhaoli, et al. Changes of Drought Characteristics in Future in Pearl River Basin Describingby a New Comprehensive Standardized Drought Index[J].Journal of Hydraulic Engineering, 2021, 52(4): 486-497.
    [30]
    Narasimhan B, Srinivasan R. Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for Agricultural Drought Monitoring[J].Agricultural and Forest Meteorology,2005,133(1/2/3/4): 69-88.
    [31]
    陈思, 钟无双, Waseem Muhammad, 等. 基于修正复合干旱指数的干旱综合监测及其在湖北省的应用[J].长江流域资源与环境,2021,30(11):2726-2735.

    Chen Si, Zhong Wushuang, Waseem M, et al. A Modified Composite Drought Index for Comprehensive Drought Monitoring and Its Applications in Hubei Province[J].Resources and Environment in the Yangtze Basin, 2021, 30(11): 2726-2735.
  • Related Articles

    [1]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [2]ZHENG Nanshan, FENG Qiulin, LIU Chen, ZHOU Xiaomin. Relationship Analysis Between GPS Reflection Signal SNR and NDVI[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1423-1429. DOI: 10.13203/j.whugis20180046
    [3]ZHANG Guofeng, YANG Lirong. Assessing the Local Uncertainty of Precipitation with Copulas[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 805-809. DOI: 10.13203/j.whugis20130497
    [4]GAN Wenxia, SHEN Huanfeng, ZHANG Liangpei, GONG Wei. Normalization of Multi-temporal MODIS NDVI Based on6SRadiative Transfer Model[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 300-304. DOI: 10.13203/j.whugis20120731
    [5]HAN Ping, WANG Pengxin, ZHANG Shuyu, ZHU Dehai. Drought Forecasting with Vegetation Temperature Condition Index[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1202-1206.
    [6]LIU Liangming, XIANG Daxiang, WEN Xiongfei, YANG Na. Improvement of Cloud Parameters Based Drought Monitoring Model Using Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 207-209.
    [7]SUN Jianguo, AI Tinghua, WANG Pei, ZHAO Chuanyan. Assessing Vegetation Degradation Based on NDVI-climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576.
    [8]WANG Zhengxing, LIU Chuang, CHEN Wenbo, LIN Xin. Preliminary Comparison of MODIS-NDVI and MODIS-EVI in Eastern Asia[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 407-410.
    [9]LIU Liangming, LIANG Yitong, MA Huiyun, HUANG Jing. Relationship Research Between MODIS-NDVI and AVHRR-NDVI[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 307-310.
    [10]WANG Pengxin, GONG Jianya, LI Xiaowen. Vegetation-Temperature Condition Index and Its Application for Drought Monitoring[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 412-418.
  • Cited by

    Periodical cited type(11)

    1. 杨军,张金影,康玥. 基于自注意力机制的高分遥感影像语义分割. 哈尔滨工程大学学报. 2025(02): 344-354 .
    2. 梁欣荣,冯勃. 基于生成对抗网络的窗户精细结构半监督识别. 测绘与空间地理信息. 2024(02): 186-189 .
    3. 冯德军,郭笑坤,曲晓玉,桂福坤,杨旭. 基于计算机视觉的大黄鱼表型参数测量研究. 中国水产科学. 2024(10): 1174-1185 .
    4. 张钰屏,刘籽琳,陈天其. 遥感影像变化检测研究进展. 电脑与信息技术. 2023(02): 15-18 .
    5. 李家艺,黄昕,胡宇平,张震,张雪婷,张淑蕾,方兴. 夜光影像和高分辨率影像耦合的土耳其Mw 7.8地震建筑倒塌智能解译. 武汉大学学报(信息科学版). 2023(10): 1706-1714 .
    6. 万立志,张运楚,葛浙东,王超. 基于孪生神经网络的小样本人脸识别. 山东建筑大学学报. 2022(01): 79-85+99 .
    7. 仇娇慧,贝绍轶,尹明锋,卿宏军. 基于改进YOLOv5s的齿轮表面缺陷检测. 现代制造工程. 2022(03): 104-113 .
    8. 彭懋磊,郝宁,李垠,张萍. 基于0.2m分辨率遥感影像的震害信息提取仿真. 计算机仿真. 2022(10): 209-213 .
    9. 章天杰,王洋洋,韩海航,罗雪. 基于改进两步式卷积神经网络的沥青路面裂缝识别方法. 公路交通科技. 2022(10): 1-8+58 .
    10. 李雨龙,陈松,李鑫,李昌龙,赵耀耀,李顺. 基于深度学习的管件识别与位姿估计研究. 制造技术与机床. 2022(12): 70-75 .
    11. 郭奕,黄佳芯,邓博奇,刘洋成. 改进Mask R-CNN的真实环境下鱼体语义分割. 农业工程学报. 2022(23): 162-169 .

    Other cited types(18)

Catalog

    Article views (959) PDF downloads (110) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return