Citation: | GUO Rumeng, YANG Haozhe, TANG Xiongwei, ZHANG Wenting, XU Xiaoxue, LIU Dechuan, SUN Heping. A Review on Satellite Geodesy Applied to Image the Earthquake Cycle Deformation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 799-806. DOI: 10.13203/j.whugis20220166 |
[1] |
Segall P, Davis J L. GPS Applications for Geodynamics and Earthquake Studies[J]. Annual Review of Earth and Planetary Sciences, 1997, 25: 301-336 doi: 10.1146/annurev.earth.25.1.301
|
[2] |
Bürgmann R, Rosen P A, Fielding E J. Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and Its Deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 169-209 doi: 10.1146/annurev.earth.28.1.169
|
[3] |
沈正康. 卫星大地测量用于东亚大陆地球动力学与地震学研究回顾[J]. 地球物理学报, 2021, 64(10): 3514-3520 doi: 10.6038/cjg2021P0541
Shen Zhengkang. Satellite Geodesy Applied to Geodynamic and Seismological Studies in East Asia: A Review[J]. Chinese Journal of Geophysics, 2021, 64(10): 3514-3520 doi: 10.6038/cjg2021P0541
|
[4] |
Elliott J R, Walters R J, Wright T J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016, 7: 13844 doi: 10.1038/ncomms13844
|
[5] |
瞿伟, 高源, 陈海禄, 等. 利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J]. 地球科学与环境学报, 2021, 43(1): 182-204 https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101013.htm
Qu Wei, Gao Yuan, Chen Hailu, et al. Review on Characteristics of Present Crustal Tectonic Movement and Deformation in Qinghai-Tibet Plateau, China Using GPS High Precision Monitoring Data[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 182-204 https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101013.htm
|
[6] |
Zhang W T, Ji L Y, Zhu L Y, et al. Current Slip and Strain Rate Distribution Along the Ganzi-Yushu-Xianshuihe Fault System Based on InSAR and GPS Observations[J]. Frontiers in Earth Science, 2022, 10: 821761 doi: 10.3389/feart.2022.821761
|
[7] |
季灵运, 朱良玉, 李宁, 等. 基于大地测量观测的断层运动研究综述[J]. 大地测量与地球动力学, 2017, 37(8): 771-776 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201708001.htm
Ji Lingyun, Zhu Liangyu, Li Ning, et al. Review of Fault Movement Based on Geodetic Observations[J]. Journal of Geodesy and Geodynamics, 2017, 37(8): 771-776 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201708001.htm
|
[8] |
Guo R M, Zheng Y, Xu J Q. Stress Modulation of the Seismic Gap Between the 2008 Ms 8.0 Wenchuan Earthquake and the 2013 Ms 7.0 Lushan Earthquake and Implications for Seismic Hazard[J]. Geophysical Journal International, 2020, 221(3): 2113-2125 doi: 10.1093/gji/ggaa143
|
[9] |
Feigl K L, Thatcher W. Geodetic Observations of Post-Seismic Transients in the Context of the Earthquake Deformation Cycle[J]. Comptes Rendus Geoscience, 2006, 338(14/15): 1012-1028
|
[10] |
Zheng Y, Guo R M. Earthquake Potential of the Seismic Gap Between the Wenchuan and Lushan Earthquakes: Current Status, Thoughts, and Challenges[J]. Science China Earth Sciences, 2021, 64(3): 503-506 doi: 10.1007/s11430-020-9719-y
|
[11] |
Lindsey E O, Mallick R, Hubbard J A, et al. Slip Rate Deficit and Earthquake Potential on Shallow Megathrusts[J]. Nature Geoscience, 2021, 14(5): 321-326 doi: 10.1038/s41561-021-00736-x
|
[12] |
Fialko Y. Interseismic Strain Accumulation and the Earthquake Potential on the Southern San Andreas Fault System[J]. Nature, 2006, 441(7096): 968-971 doi: 10.1038/nature04797
|
[13] |
邹镇宇, 江在森, 武艳强, 等. 利用带倾角断层形变公式研究川滇块体东边界断裂带形变特征[J]. 武汉大学学报·信息科学版, 2018, 43(11): 1688-1695 doi: 10.13203/j.whugis20160415
Zou Zhenyu, Jiang Zaisen, Wu Yanqiang, et al. Deformation Characteristics of the Eastern Boundary Fault Zone of Sichuan-Yunnan Block Using the Deformation Formula of Seismic Fault with Dip Angle[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1688-1695 doi: 10.13203/j.whugis20160415
|
[14] |
Meade B J. Block Models of Crustal Motion in Southern California Constrained by GPS Measurements[J]. Journal of Geophysical Research, 2005, 110: B03403
|
[15] |
Wang K L, Zhu Y J, Nissen E, et al. On the Relevance of Geodetic Deformation Rates to Earthquake Potential[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093231
|
[16] |
Diao F Q, Xiong X, Wang R J, et al. Slip Rate Variation Along the Kunlun Fault (Tibet): Results from New GPS Observations and a Viscoelastic Earthquake-Cycle Deformation Model[J]. Geophysical Research Letters, 2019, 46(5): 2524-2533 doi: 10.1029/2019GL081940
|
[17] |
Guo R M, Zheng Y, Tian W, et al. Locking Status and Earthquake Potential Hazard Along the Middle-South Xianshuihe Fault[J]. Remote Sensing, 2018, 10(12): 2048 doi: 10.3390/rs10122048
|
[18] |
Daout S, Jolivet R, Lasserre C, et al. Along-Strike Variations of the Partitioning of Convergence Across the Haiyuan Fault System Detected by InSAR[J]. Geophysical Journal International, 2016, 205(1): 536-547 doi: 10.1093/gji/ggw028
|
[19] |
Jolivet R, Lasserre C, Doin M P, et al. Shallow Creep on the Haiyuan Fault (Gansu, China) Revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): e2000JB008732
|
[20] |
Guo R M, Yang H F, Li Y, et al. Complex Slip Distribution of the 2021 Mw 7.4 Maduo, China, Earthquake: An Event Occurring on the Slowly Slipping Fault[J]. Seismological Research Letters, 2022, 93(2A): 653-665 doi: 10.1785/0220210226
|
[21] |
Meade B J, Klinger Y, Hetland E A. Inference of Multiple Earthquake-Cycle Relaxation Timescales from Irregular Geodetic Sampling of Interseismic Deformation[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2824-2835 doi: 10.1785/0120130006
|
[22] |
Wang K L, Hu Y, He J H. Deformation Cycles of Subduction Earthquakes in a Viscoelastic Earth[J]. Nature, 2012, 484(7394): 327-332 doi: 10.1038/nature11032
|
[23] |
Hilley G E, Johnson K M, Wang M, et al. Earthquake-Cycle Deformation and Fault Slip Rates in Northern Tibet[J]. Geology, 2009, 37(1): 31-34 doi: 10.1130/G25157A.1
|
[24] |
Chuang R Y, Johnson K M. Reconciling Geologic and Geodetic Model Fault Slip-Rate Discrepancies in Southern California: Consideration of Nonsteady Mantle Flow and Lower Crustal Fault Creep[J]. Geo-logy, 2011, 39(7): 627-630
|
[25] |
Bruhat L, Segall P. Deformation Rates in Northern Cascadia Consistent with Slow Updip Propagation of Deep Interseismic Creep[J]. Geophysical Journal International, 2017, 211(1): 427-449 doi: 10.1093/gji/ggx317
|
[26] |
Lay T, Kanamori H. An Asperity Model of Large Earthquake Sequences[M]//Earthquake Prediction: An International Review. Washington DC: American Geophysical Union, 1981: 579–592
|
[27] |
Guo R M, Zheng Y, An C, et al. The 2018 Mw 7.9 Offshore Kodiak, Alaska, Earthquake: An Unusual Outer Rise Strike-Slip Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB019267
|
[28] |
Yue H, Lay T, Koper K D. En Échelon and Orthogonal Fault Ruptures of the 11 April 2012 Great Intraplate Earthquakes[J]. Nature, 2012, 490(7419): 245-249 doi: 10.1038/nature11492
|
[29] |
An C, Yue H, Sun J B, et al. The 2015 Mw 8.3 Illapel, Chile, Earthquake: Direction-Reversed Along-Dip Rupture with Localized Water Reverberation[J]. Bulletin of the Seismological Society of America, 2017, 107(5): 2416-2426 doi: 10.1785/0120160393
|
[30] |
Yao H J, Gerstoft P, Shearer P M, et al. Compressive Sensing of the Tohoku-Oki Mw 9.0 Earthquake: Frequency-Dependent Rupture Modes[J]. Geophysical Research Letters, 2011, 38.
|
[31] |
Tang X W, Guo R M, Xu J Q, et al. Probing the Fault Complexity of the 2017 Ms 7.0 Jiuzhaigou Earthquake Based on the InSAR Data[J]. Remote Sensing, 2021, 13(8): 1573 doi: 10.3390/rs13081573
|
[32] |
Guo R M, Yang H F, Zhu Y F, et al. Narrow Rupture of the 2020 Mw 7.4 La Crucecita, Mexico, Earthquake[J]. Seismological Research Letters, 2021, 92(3): 1891-1899 doi: 10.1785/0220200328
|
[33] |
许才军, 邓长勇, 周力璇. 利用方差分量估计的地震同震滑动分布反演[J]. 武汉大学学报·信息科学版, 2016, 41(1): 37-44 doi: 10.13203/j.whugis20150500
Xu Caijun, Deng Changyong, Zhou Lixuan. Coseismic Slip Distribution Inversion Method Based on the Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 37-44 doi: 10.13203/j.whugis20150500
|
[34] |
Ji C. Source Description of the 1999 Hector Mine, California, Earthquake, Part Ⅰ: Wavelet Domain Inversion Theory and Resolution Analysis[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1192-1207 doi: 10.1785/0120000916
|
[35] |
Hayes G P. The Finite, Kinematic Rupture Properties of Great-Sized Earthquakes Since 1990[J]. Earth and Planetary Science Letters, 2017, 468: 94-100 doi: 10.1016/j.epsl.2017.04.003
|
[36] |
Hartzell S, Mendoza C, Ramirez-Guzman L, et al. Rupture History of the 2008 Mw 7.9 Wenchuan, China, Earthquake: Evaluation of Separate and Joint Inversions of Geodetic, Teleseismic, and Strong-Motion Data[J]. Bulletin of the Seismological Society of America, 2013, 103(1): 353-370 doi: 10.1785/0120120108
|
[37] |
Yue H, Zhang Y, Ge Z X, et al. Resolving Rupture Processes of Great Earthquakes: Reviews and Perspective from Fast Response to Joint Inversion[J]. Science China Earth Sciences, 2020, 63(4): 492-511 doi: 10.1007/s11430-019-9549-1
|
[38] |
Xu C, Liu Y, Wen Y, et al. Coseismic Slip Distribution of the 2008 Mw 7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2736-2749 doi: 10.1785/0120090253
|
[39] |
Shen Z K, Sun J, Zhang P, et al. Slip Maxima at Fault Junctions and Rupturing of Barriers During the 2008 Wenchuan Earthquake[J]. Nature Geoscience, 2009, 2(10): 718-724 doi: 10.1038/ngeo636
|
[40] |
Guo R M, Zheng Y, Diao F Q, et al. Rupture Model of the 2013 Mw 6.6 Lushan (China) Earthquake Constrained by a New GPS Data Set and Its Effects on Potential Seismic Hazard[J]. Earthquake Science, 2018, 31(3): 117-125 doi: 10.29382/eqs-2018-0117-1
|
[41] |
Yang H F, Wang D, Guo R M, et al. Rapid Report of the 8 January 2022 Ms 6.9 Menyuan Earthquake, Qinghai, China[J]. Earthquake Research Advances, 2022, 2(1): 100113 doi: 10.1016/j.eqrea.2022.100113
|
[42] |
Bürgmann R, Dresen G. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 531-567 doi: 10.1146/annurev.earth.36.031207.124326
|
[43] |
Barbot S, Fialko Y. A Unified Continuum Representation of Post-Seismic Relaxation Mechanisms: Semi-Analytic Models of Afterslip, Poroelastic Rebound and Viscoelastic Flow[J]. Geophysical Journal International, 2010, 182(3): 1124-1140 doi: 10.1111/j.1365-246X.2010.04678.x
|
[44] |
李志才, 许才军, 张鹏, 等. 顾及地壳粘弹性结构的地震断层震后形变反演分析[J]. 武汉大学学报·信息科学版, 2014, 39(12): 1477-1481 http://ch.whu.edu.cn/article/id/3144
Li Zhicai, Xu Caijun, Zhang Peng, et al. Post-Seismic Deformation Inversion of Seismic Fault Considering the Crustal Viscoelastic Structure[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1477-1481 http://ch.whu.edu.cn/article/id/3144
|
[45] |
Bedford J, Moreno M, Li S Y, et al. Separating Rapid Relocking, Afterslip, and Viscoelastic Relaxation: An Application of the Postseismic Straightening Method to the Maule 2010 CGPS[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7618-7638 doi: 10.1002/2016JB013093
|
[46] |
Marone C J, Scholtz C H, Bilham R. On the Mechanics of Earthquake Afterslip[J]. Journal of Geophysical Research, 1991, 96(B5): 8441 doi: 10.1029/91JB00275
|
[47] |
Guo R M, Zheng Y, Xu J Q, et al. Seismic and Aseismic Fault Slip Associated with the 2017 Mw 8.2 Chiapas, Mexico, Earthquake Sequence[J]. Seismological Research Letters, 2019, 90(3): 1111-1120 doi: 10.1785/0220180262
|
[48] |
He L J, Feng G C, Wu X X, et al. Coseismic and Early Postseismic Slip Models of the 2021 Mw 7.4 Maduo Earthquake (Western China) Estimated by Space-Based Geodetic Data[J]. Geophysical Research Letters, 2021, 48(24): e2021GL095860
|
[49] |
Barbot S, Fialko Y, Bock Y. Postseismic Deformation Due to the Mw 6.0 2004 Parkfield Earthquake: Stress-Driven Creep on a Fault with Spatially Variable Rate-and-State Friction Parameters[J]. Journal of Geophysical Research, 2009, 114: B07405
|
[50] |
Tian Z, Freymueller J T, Yang Z Q. Postseismic Deformation Due to the 2012 Mw 7.8 Haida Gwaii and 2013 Mw 7.5 Craig Earthquakes and Its Implications for Regional Rheological Structure[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(2): e2020JB020197
|
[51] |
Wang K, Fialko Y. Observations and Modeling of Coseismic and Postseismic Deformation Due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 761-779 doi: 10.1002/2017JB014620
|
[52] |
Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal, Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8376-8401 doi: 10.1002/2017JB014366
|
[53] |
Johnson K M, Fukuda J, Segall P. Challenging the Rate-State Asperity Model: Afterslip Following the 2011 M 9 Tohoku-Oki, Japan, Earthquake[J]. Geophysical Research Letters, 2012, 39(20): 2012GL052901
|
[54] |
Shrivastava M N, González G, Moreno M, et al. Coseismic Slip and Afterslip of the 2015 Mw 8.3 Illapel (Chile) Earthquake Determined from Continuous GPS Data[J]. Geophysical Research Letters, 2016, 43: 710-719
|
[55] |
Sun T, Wang K L, Iinuma T, et al. Prevalence of Viscoelastic Relaxation After the 2011 Tohoku-Oki Earthquake[J]. Nature, 2014, 514(7520): 84-87 doi: 10.1038/nature13778
|
[56] |
Huang M H, Bürgmann R, Freed A M. Probing the Lithospheric Rheology Across the Eastern Margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2014, 396: 88-96 doi: 10.1016/j.epsl.2014.04.003
|
[57] |
Guo R M, Zheng Y, Xu J Q, et al. Transient Viscosity and Afterslip of the 2015 Mw 8.3 Illapel, Chile, Earthquake[J]. Bulletin of the Seismological Society of America, 2019, 109(6): 2567-2581 doi: 10.1785/0120190114
|
[58] |
Freed A M. Afterslip (and only Afterslip) Following the 2004 Parkfield, California, Earthquake[J]. Geophysical Research Letters, 2007, 34(6): L06312
|
[59] |
Jónsson S, Segall P, Pedersen R, et al. Post-Earthquake Ground Movements Correlated to Pore-Pressure Transients[J]. Nature, 2003, 424(6945): 179-183 doi: 10.1038/nature01776
|
[60] |
Peltzer G, Rosen P, Rogez F, et al. Poroelastic Rebound Along the Landers 1992 Earthquake Surface Rupture[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30131-30145 doi: 10.1029/98JB02302
|
[61] |
Wang R J, Kümpel H J. Poroelasticity: Efficient Modeling of Strongly Coupled, Slow Deformation Processes in a Multilayered Half-Space[J]. Geophysics, 2003, 68(2): 705-717 doi: 10.1190/1.1567241
|
[62] |
Yang H Z, Guo R M, Zhou J C, et al. Transient Poroelastic Response to Megathrust Earthquakes: A Look at the 2015 Mw 8.3 Illapel, Chile, Event[J]. Geophysical Journal International, 2022, 230(2): 908-915 doi: 10.1093/gji/ggac099
|
[63] |
Hu Y, Bürgmann R, Freymueller J T, et al. Contributions of Poroelastic Rebound and a Weak Volcanic Arc to the Postseismic Deformation of the 2011 Tohoku Earthquake[J]. Earth, Planets and Space, 2014, 66: 106 doi: 10.1186/1880-5981-66-106
|
[1] | DENG Bo, ZHANG Hui, BAI Jun, DONG Xiujun, JIN Dianqi, JIN Songyan, ZHANG Shaobiao. Hazard Evaluation of the Slope Based on Airborne LiDAR Data in Shenzhen, China[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1377-1391. DOI: 10.13203/j.whugis20220141 |
[2] | XU Caijun, HE Kefeng. Advancements in Earthquake Cycle Deformation Research Based on Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1736-1755. DOI: 10.13203/j.whugis20230304 |
[3] | XU Caijun, XIONG Wei, LIU Chuanjin. Progress in Studying of 3D Crustal Deformation and Seismic Risk Assessment of the Tibetan Plateau Using Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 997-1009. DOI: 10.13203/j.whugis20230126 |
[4] | XU Caijun, WANG Xiaohang, WEN Yangmao, LI Wei. Progress and Prospects of Seismic Geodetic Determination of Asperities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1701-1712. DOI: 10.13203/j.whugis20220446 |
[5] | WANG Jiapei, ZHANG Xinlin, ZHANG Yi, LI Zhongya, HU Minzhang, SHEN Chongyang. Analysis of Gravity Variation and Vertical Crustal Deformation at Wuhan Jiufeng Seismic Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 964-971. DOI: 10.13203/j.whugis20220157 |
[6] | JIANG Ying, LIU Ziwei, ZHANG Xiaotong, ZHANG Lina, WEI Jin. Variation Features of b-Value Before and After the 2021 Maduo Mw 7.4 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 907-915. DOI: 10.13203/j.whugis20220071 |
[7] | LI Chong, LI Jiancheng, HUANG Ruijin, TAN Li. Discussion of Crustal Flow Beneath the Eastern Tibetan Plateau and Mechanism of the Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 810-815. DOI: 10.13203/j.whugis20130655 |
[8] | Yin Myo Min Htwe, SHEN Wenbin, SUN Rong. Seismic Hazard Assessment in Yangon(Burma) and Its Surrounding Areas[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 463-466. |
[9] | GU Guohua, WANG Wuxing, MENG Guojie, XU Yueren. Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1336-1339. |
[10] | WU Yun, SUN Jianzhong, QIAO Xuejun, WANG Hui. Applications of GPS to Current Crust Movements and Monitoring Seismic Precursors[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 79-82,136. |