GUO Rumeng, YANG Haozhe, TANG Xiongwei, ZHANG Wenting, XU Xiaoxue, LIU Dechuan, SUN Heping. A Review on Satellite Geodesy Applied to Image the Earthquake Cycle Deformation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 799-806. DOI: 10.13203/j.whugis20220166
Citation: GUO Rumeng, YANG Haozhe, TANG Xiongwei, ZHANG Wenting, XU Xiaoxue, LIU Dechuan, SUN Heping. A Review on Satellite Geodesy Applied to Image the Earthquake Cycle Deformation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 799-806. DOI: 10.13203/j.whugis20220166

A Review on Satellite Geodesy Applied to Image the Earthquake Cycle Deformation

Funds: 

The Strategic Priority Research Program of Chinese Academy of Sciences XDB41000000

Open Fund of Wuhan, Gravitation and Solid Earth Tides, National Observation and Research Station WHYWZ202111

More Information
  • Author Bio:

    GUO Rumeng, PhD, associate professor, specializes in fault deformation associated with earthquake cycle. E-mail: guorm@apm.ac.cn

  • Corresponding author:

    SUN Heping, PhD, professor, Academician of Chinese Academy of Sciences.E-mail: heping@whigg.ac.cn

  • Received Date: May 10, 2022
  • Available Online: May 19, 2022
  • Published Date: June 04, 2022
  • In recent years, the rapid development of satellite geodesy provides unprecedented multidimensional observations for the accurate measurement of crustal deformation and fault behavior. Combined with seismology, the temporal and spatial resolution of earthquake cycle deformation monitoring is greatly improved, which provides a chance for further study of earthquake cycle process and mechanism. Seismogeodesy can quantitatively describe the crustal movement and accurately model the fault activity. It can also provide a scientific basis to understand the stress and strain evolution of the whole earthquake cycle process, and provide scientific guidance for the assessment of seismic hazard and earthquake prediction and early warning. This paper analyzes the kinematic characteristics of faults at different stages of the earthquake cycle, including interseismic, coseismic, and postseismic, and reviews some important findings of seismic geodesy in terms of source physics by using satellite geodetic observations to investigate fault deformation. The satellite geodetic data can be applied to determine the fault location in the stage of earthquake cycle. It is a feasible idea for earthquake prediction.
  • [1]
    Segall P, Davis J L. GPS Applications for Geodynamics and Earthquake Studies[J]. Annual Review of Earth and Planetary Sciences, 1997, 25: 301-336 doi: 10.1146/annurev.earth.25.1.301
    [2]
    Bürgmann R, Rosen P A, Fielding E J. Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and Its Deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 169-209 doi: 10.1146/annurev.earth.28.1.169
    [3]
    沈正康. 卫星大地测量用于东亚大陆地球动力学与地震学研究回顾[J]. 地球物理学报, 2021, 64(10): 3514-3520 doi: 10.6038/cjg2021P0541

    Shen Zhengkang. Satellite Geodesy Applied to Geodynamic and Seismological Studies in East Asia: A Review[J]. Chinese Journal of Geophysics, 2021, 64(10): 3514-3520 doi: 10.6038/cjg2021P0541
    [4]
    Elliott J R, Walters R J, Wright T J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016, 7: 13844 doi: 10.1038/ncomms13844
    [5]
    瞿伟, 高源, 陈海禄, 等. 利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J]. 地球科学与环境学报, 2021, 43(1): 182-204 https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101013.htm

    Qu Wei, Gao Yuan, Chen Hailu, et al. Review on Characteristics of Present Crustal Tectonic Movement and Deformation in Qinghai-Tibet Plateau, China Using GPS High Precision Monitoring Data[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 182-204 https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101013.htm
    [6]
    Zhang W T, Ji L Y, Zhu L Y, et al. Current Slip and Strain Rate Distribution Along the Ganzi-Yushu-Xianshuihe Fault System Based on InSAR and GPS Observations[J]. Frontiers in Earth Science, 2022, 10: 821761 doi: 10.3389/feart.2022.821761
    [7]
    季灵运, 朱良玉, 李宁, 等. 基于大地测量观测的断层运动研究综述[J]. 大地测量与地球动力学, 2017, 37(8): 771-776 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201708001.htm

    Ji Lingyun, Zhu Liangyu, Li Ning, et al. Review of Fault Movement Based on Geodetic Observations[J]. Journal of Geodesy and Geodynamics, 2017, 37(8): 771-776 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201708001.htm
    [8]
    Guo R M, Zheng Y, Xu J Q. Stress Modulation of the Seismic Gap Between the 2008 Ms 8.0 Wenchuan Earthquake and the 2013 Ms 7.0 Lushan Earthquake and Implications for Seismic Hazard[J]. Geophysical Journal International, 2020, 221(3): 2113-2125 doi: 10.1093/gji/ggaa143
    [9]
    Feigl K L, Thatcher W. Geodetic Observations of Post-Seismic Transients in the Context of the Earthquake Deformation Cycle[J]. Comptes Rendus Geoscience, 2006, 338(14/15): 1012-1028
    [10]
    Zheng Y, Guo R M. Earthquake Potential of the Seismic Gap Between the Wenchuan and Lushan Earthquakes: Current Status, Thoughts, and Challenges[J]. Science China Earth Sciences, 2021, 64(3): 503-506 doi: 10.1007/s11430-020-9719-y
    [11]
    Lindsey E O, Mallick R, Hubbard J A, et al. Slip Rate Deficit and Earthquake Potential on Shallow Megathrusts[J]. Nature Geoscience, 2021, 14(5): 321-326 doi: 10.1038/s41561-021-00736-x
    [12]
    Fialko Y. Interseismic Strain Accumulation and the Earthquake Potential on the Southern San Andreas Fault System[J]. Nature, 2006, 441(7096): 968-971 doi: 10.1038/nature04797
    [13]
    邹镇宇, 江在森, 武艳强, 等. 利用带倾角断层形变公式研究川滇块体东边界断裂带形变特征[J]. 武汉大学学报·信息科学版, 2018, 43(11): 1688-1695 doi: 10.13203/j.whugis20160415

    Zou Zhenyu, Jiang Zaisen, Wu Yanqiang, et al. Deformation Characteristics of the Eastern Boundary Fault Zone of Sichuan-Yunnan Block Using the Deformation Formula of Seismic Fault with Dip Angle[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1688-1695 doi: 10.13203/j.whugis20160415
    [14]
    Meade B J. Block Models of Crustal Motion in Southern California Constrained by GPS Measurements[J]. Journal of Geophysical Research, 2005, 110: B03403
    [15]
    Wang K L, Zhu Y J, Nissen E, et al. On the Relevance of Geodetic Deformation Rates to Earthquake Potential[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093231
    [16]
    Diao F Q, Xiong X, Wang R J, et al. Slip Rate Variation Along the Kunlun Fault (Tibet): Results from New GPS Observations and a Viscoelastic Earthquake-Cycle Deformation Model[J]. Geophysical Research Letters, 2019, 46(5): 2524-2533 doi: 10.1029/2019GL081940
    [17]
    Guo R M, Zheng Y, Tian W, et al. Locking Status and Earthquake Potential Hazard Along the Middle-South Xianshuihe Fault[J]. Remote Sensing, 2018, 10(12): 2048 doi: 10.3390/rs10122048
    [18]
    Daout S, Jolivet R, Lasserre C, et al. Along-Strike Variations of the Partitioning of Convergence Across the Haiyuan Fault System Detected by InSAR[J]. Geophysical Journal International, 2016, 205(1): 536-547 doi: 10.1093/gji/ggw028
    [19]
    Jolivet R, Lasserre C, Doin M P, et al. Shallow Creep on the Haiyuan Fault (Gansu, China) Revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): e2000JB008732
    [20]
    Guo R M, Yang H F, Li Y, et al. Complex Slip Distribution of the 2021 Mw 7.4 Maduo, China, Earthquake: An Event Occurring on the Slowly Slipping Fault[J]. Seismological Research Letters, 2022, 93(2A): 653-665 doi: 10.1785/0220210226
    [21]
    Meade B J, Klinger Y, Hetland E A. Inference of Multiple Earthquake-Cycle Relaxation Timescales from Irregular Geodetic Sampling of Interseismic Deformation[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2824-2835 doi: 10.1785/0120130006
    [22]
    Wang K L, Hu Y, He J H. Deformation Cycles of Subduction Earthquakes in a Viscoelastic Earth[J]. Nature, 2012, 484(7394): 327-332 doi: 10.1038/nature11032
    [23]
    Hilley G E, Johnson K M, Wang M, et al. Earthquake-Cycle Deformation and Fault Slip Rates in Northern Tibet[J]. Geology, 2009, 37(1): 31-34 doi: 10.1130/G25157A.1
    [24]
    Chuang R Y, Johnson K M. Reconciling Geologic and Geodetic Model Fault Slip-Rate Discrepancies in Southern California: Consideration of Nonsteady Mantle Flow and Lower Crustal Fault Creep[J]. Geo-logy, 2011, 39(7): 627-630
    [25]
    Bruhat L, Segall P. Deformation Rates in Northern Cascadia Consistent with Slow Updip Propagation of Deep Interseismic Creep[J]. Geophysical Journal International, 2017, 211(1): 427-449 doi: 10.1093/gji/ggx317
    [26]
    Lay T, Kanamori H. An Asperity Model of Large Earthquake Sequences[M]//Earthquake Prediction: An International Review. Washington DC: American Geophysical Union, 1981: 579–592
    [27]
    Guo R M, Zheng Y, An C, et al. The 2018 Mw 7.9 Offshore Kodiak, Alaska, Earthquake: An Unusual Outer Rise Strike-Slip Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB019267
    [28]
    Yue H, Lay T, Koper K D. En Échelon and Orthogonal Fault Ruptures of the 11 April 2012 Great Intraplate Earthquakes[J]. Nature, 2012, 490(7419): 245-249 doi: 10.1038/nature11492
    [29]
    An C, Yue H, Sun J B, et al. The 2015 Mw 8.3 Illapel, Chile, Earthquake: Direction-Reversed Along-Dip Rupture with Localized Water Reverberation[J]. Bulletin of the Seismological Society of America, 2017, 107(5): 2416-2426 doi: 10.1785/0120160393
    [30]
    Yao H J, Gerstoft P, Shearer P M, et al. Compressive Sensing of the Tohoku-Oki Mw 9.0 Earthquake: Frequency-Dependent Rupture Modes[J]. Geophysical Research Letters, 2011, 38.
    [31]
    Tang X W, Guo R M, Xu J Q, et al. Probing the Fault Complexity of the 2017 Ms 7.0 Jiuzhaigou Earthquake Based on the InSAR Data[J]. Remote Sensing, 2021, 13(8): 1573 doi: 10.3390/rs13081573
    [32]
    Guo R M, Yang H F, Zhu Y F, et al. Narrow Rupture of the 2020 Mw 7.4 La Crucecita, Mexico, Earthquake[J]. Seismological Research Letters, 2021, 92(3): 1891-1899 doi: 10.1785/0220200328
    [33]
    许才军, 邓长勇, 周力璇. 利用方差分量估计的地震同震滑动分布反演[J]. 武汉大学学报·信息科学版, 2016, 41(1): 37-44 doi: 10.13203/j.whugis20150500

    Xu Caijun, Deng Changyong, Zhou Lixuan. Coseismic Slip Distribution Inversion Method Based on the Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 37-44 doi: 10.13203/j.whugis20150500
    [34]
    Ji C. Source Description of the 1999 Hector Mine, California, Earthquake, Part Ⅰ: Wavelet Domain Inversion Theory and Resolution Analysis[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1192-1207 doi: 10.1785/0120000916
    [35]
    Hayes G P. The Finite, Kinematic Rupture Properties of Great-Sized Earthquakes Since 1990[J]. Earth and Planetary Science Letters, 2017, 468: 94-100 doi: 10.1016/j.epsl.2017.04.003
    [36]
    Hartzell S, Mendoza C, Ramirez-Guzman L, et al. Rupture History of the 2008 Mw 7.9 Wenchuan, China, Earthquake: Evaluation of Separate and Joint Inversions of Geodetic, Teleseismic, and Strong-Motion Data[J]. Bulletin of the Seismological Society of America, 2013, 103(1): 353-370 doi: 10.1785/0120120108
    [37]
    Yue H, Zhang Y, Ge Z X, et al. Resolving Rupture Processes of Great Earthquakes: Reviews and Perspective from Fast Response to Joint Inversion[J]. Science China Earth Sciences, 2020, 63(4): 492-511 doi: 10.1007/s11430-019-9549-1
    [38]
    Xu C, Liu Y, Wen Y, et al. Coseismic Slip Distribution of the 2008 Mw 7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2736-2749 doi: 10.1785/0120090253
    [39]
    Shen Z K, Sun J, Zhang P, et al. Slip Maxima at Fault Junctions and Rupturing of Barriers During the 2008 Wenchuan Earthquake[J]. Nature Geoscience, 2009, 2(10): 718-724 doi: 10.1038/ngeo636
    [40]
    Guo R M, Zheng Y, Diao F Q, et al. Rupture Model of the 2013 Mw 6.6 Lushan (China) Earthquake Constrained by a New GPS Data Set and Its Effects on Potential Seismic Hazard[J]. Earthquake Science, 2018, 31(3): 117-125 doi: 10.29382/eqs-2018-0117-1
    [41]
    Yang H F, Wang D, Guo R M, et al. Rapid Report of the 8 January 2022 ​Ms 6.9 Menyuan Earthquake, Qinghai, China[J]. Earthquake Research Advances, 2022, 2(1): 100113 doi: 10.1016/j.eqrea.2022.100113
    [42]
    Bürgmann R, Dresen G. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 531-567 doi: 10.1146/annurev.earth.36.031207.124326
    [43]
    Barbot S, Fialko Y. A Unified Continuum Representation of Post-Seismic Relaxation Mechanisms: Semi-Analytic Models of Afterslip, Poroelastic Rebound and Viscoelastic Flow[J]. Geophysical Journal International, 2010, 182(3): 1124-1140 doi: 10.1111/j.1365-246X.2010.04678.x
    [44]
    李志才, 许才军, 张鹏, 等. 顾及地壳粘弹性结构的地震断层震后形变反演分析[J]. 武汉大学学报·信息科学版, 2014, 39(12): 1477-1481 http://ch.whu.edu.cn/article/id/3144

    Li Zhicai, Xu Caijun, Zhang Peng, et al. Post-Seismic Deformation Inversion of Seismic Fault Considering the Crustal Viscoelastic Structure[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1477-1481 http://ch.whu.edu.cn/article/id/3144
    [45]
    Bedford J, Moreno M, Li S Y, et al. Separating Rapid Relocking, Afterslip, and Viscoelastic Relaxation: An Application of the Postseismic Straightening Method to the Maule 2010 CGPS[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7618-7638 doi: 10.1002/2016JB013093
    [46]
    Marone C J, Scholtz C H, Bilham R. On the Mechanics of Earthquake Afterslip[J]. Journal of Geophysical Research, 1991, 96(B5): 8441 doi: 10.1029/91JB00275
    [47]
    Guo R M, Zheng Y, Xu J Q, et al. Seismic and Aseismic Fault Slip Associated with the 2017 Mw 8.2 Chiapas, Mexico, Earthquake Sequence[J]. Seismological Research Letters, 2019, 90(3): 1111-1120 doi: 10.1785/0220180262
    [48]
    He L J, Feng G C, Wu X X, et al. Coseismic and Early Postseismic Slip Models of the 2021 Mw 7.4 Maduo Earthquake (Western China) Estimated by Space-Based Geodetic Data[J]. Geophysical Research Letters, 2021, 48(24): e2021GL095860
    [49]
    Barbot S, Fialko Y, Bock Y. Postseismic Deformation Due to the Mw 6.0 2004 Parkfield Earthquake: Stress-Driven Creep on a Fault with Spatially Variable Rate-and-State Friction Parameters[J]. Journal of Geophysical Research, 2009, 114: B07405
    [50]
    Tian Z, Freymueller J T, Yang Z Q. Postseismic Deformation Due to the 2012 Mw 7.8 Haida Gwaii and 2013 Mw 7.5 Craig Earthquakes and Its Implications for Regional Rheological Structure[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(2): e2020JB020197
    [51]
    Wang K, Fialko Y. Observations and Modeling of Coseismic and Postseismic Deformation Due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 761-779 doi: 10.1002/2017JB014620
    [52]
    Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal, Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8376-8401 doi: 10.1002/2017JB014366
    [53]
    Johnson K M, Fukuda J, Segall P. Challenging the Rate-State Asperity Model: Afterslip Following the 2011 M 9 Tohoku-Oki, Japan, Earthquake[J]. Geophysical Research Letters, 2012, 39(20): 2012GL052901
    [54]
    Shrivastava M N, González G, Moreno M, et al. Coseismic Slip and Afterslip of the 2015 Mw 8.3 Illapel (Chile) Earthquake Determined from Continuous GPS Data[J]. Geophysical Research Letters, 2016, 43: 710-719
    [55]
    Sun T, Wang K L, Iinuma T, et al. Prevalence of Viscoelastic Relaxation After the 2011 Tohoku-Oki Earthquake[J]. Nature, 2014, 514(7520): 84-87 doi: 10.1038/nature13778
    [56]
    Huang M H, Bürgmann R, Freed A M. Probing the Lithospheric Rheology Across the Eastern Margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2014, 396: 88-96 doi: 10.1016/j.epsl.2014.04.003
    [57]
    Guo R M, Zheng Y, Xu J Q, et al. Transient Viscosity and Afterslip of the 2015 Mw 8.3 Illapel, Chile, Earthquake[J]. Bulletin of the Seismological Society of America, 2019, 109(6): 2567-2581 doi: 10.1785/0120190114
    [58]
    Freed A M. Afterslip (and only Afterslip) Following the 2004 Parkfield, California, Earthquake[J]. Geophysical Research Letters, 2007, 34(6): L06312
    [59]
    Jónsson S, Segall P, Pedersen R, et al. Post-Earthquake Ground Movements Correlated to Pore-Pressure Transients[J]. Nature, 2003, 424(6945): 179-183 doi: 10.1038/nature01776
    [60]
    Peltzer G, Rosen P, Rogez F, et al. Poroelastic Rebound Along the Landers 1992 Earthquake Surface Rupture[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30131-30145 doi: 10.1029/98JB02302
    [61]
    Wang R J, Kümpel H J. Poroelasticity: Efficient Modeling of Strongly Coupled, Slow Deformation Processes in a Multilayered Half-Space[J]. Geophysics, 2003, 68(2): 705-717 doi: 10.1190/1.1567241
    [62]
    Yang H Z, Guo R M, Zhou J C, et al. Transient Poroelastic Response to Megathrust Earthquakes: A Look at the 2015 Mw 8.3 Illapel, Chile, Event[J]. Geophysical Journal International, 2022, 230(2): 908-915 doi: 10.1093/gji/ggac099
    [63]
    Hu Y, Bürgmann R, Freymueller J T, et al. Contributions of Poroelastic Rebound and a Weak Volcanic Arc to the Postseismic Deformation of the 2011 Tohoku Earthquake[J]. Earth, Planets and Space, 2014, 66: 106 doi: 10.1186/1880-5981-66-106
  • Related Articles

    [1]DENG Bo, ZHANG Hui, BAI Jun, DONG Xiujun, JIN Dianqi, JIN Songyan, ZHANG Shaobiao. Hazard Evaluation of the Slope Based on Airborne LiDAR Data in Shenzhen, China[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1377-1391. DOI: 10.13203/j.whugis20220141
    [2]XU Caijun, HE Kefeng. Advancements in Earthquake Cycle Deformation Research Based on Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1736-1755. DOI: 10.13203/j.whugis20230304
    [3]XU Caijun, XIONG Wei, LIU Chuanjin. Progress in Studying of 3D Crustal Deformation and Seismic Risk Assessment of the Tibetan Plateau Using Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 997-1009. DOI: 10.13203/j.whugis20230126
    [4]XU Caijun, WANG Xiaohang, WEN Yangmao, LI Wei. Progress and Prospects of Seismic Geodetic Determination of Asperities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1701-1712. DOI: 10.13203/j.whugis20220446
    [5]WANG Jiapei, ZHANG Xinlin, ZHANG Yi, LI Zhongya, HU Minzhang, SHEN Chongyang. Analysis of Gravity Variation and Vertical Crustal Deformation at Wuhan Jiufeng Seismic Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 964-971. DOI: 10.13203/j.whugis20220157
    [6]JIANG Ying, LIU Ziwei, ZHANG Xiaotong, ZHANG Lina, WEI Jin. Variation Features of b-Value Before and After the 2021 Maduo Mw 7.4 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 907-915. DOI: 10.13203/j.whugis20220071
    [7]LI Chong, LI Jiancheng, HUANG Ruijin, TAN Li. Discussion of Crustal Flow Beneath the Eastern Tibetan Plateau and Mechanism of the Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 810-815. DOI: 10.13203/j.whugis20130655
    [8]Yin Myo Min Htwe, SHEN Wenbin, SUN Rong. Seismic Hazard Assessment in Yangon(Burma) and Its Surrounding Areas[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 463-466.
    [9]GU Guohua, WANG Wuxing, MENG Guojie, XU Yueren. Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1336-1339.
    [10]WU Yun, SUN Jianzhong, QIAO Xuejun, WANG Hui. Applications of GPS to Current Crust Movements and Monitoring Seismic Precursors[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 79-82,136.
  • Cited by

    Periodical cited type(5)

    1. 郑勇,郭汝梦,刘德川. 川滇主要地震空区危险性的研究现状及思考. 中国科学:地球科学. 2024(11): 3375-3402 .
    2. Yong ZHENG,Rumeng GUO,Dechuan LIU. Present status and prospective on the seismic hazard studies of major seismic gaps in the Sichuan-Yunnan region. Science China Earth Sciences. 2024(11): 3339-3366 .
    3. 王鹏,刘静,刘小利,刘志军. GNSS在地表过程研究中的应用. 武汉大学学报(信息科学版). 2024(12): 2159-2180 .
    4. 许才军,贺克锋. 地震周期形变的大地测量研究进展和展望. 武汉大学学报(信息科学版). 2023(11): 1736-1755 .
    5. 王守文,季灵运,朱良玉,刘传金. 基于InSAR技术监测2021年青海玛多M_w7.4级地震同震形变场与断层滑动. 地球科学与环境学报. 2022(06): 1016-1026 .

    Other cited types(2)

Catalog

    Article views (1354) PDF downloads (229) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return