Citation: | LIAO Minghui, LUO Fulin, DU Bo. Self-supervised Low-pass Filted Graph Clustering Networks for Single Cell RNA Sequencing Data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220108 |
[1] |
Navin, N. et al. Tumor evolution inferred by single cell sequencing. Nature 472, 90-94(2011).
|
[2] |
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201(2015).
|
[3] |
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176-182(2018).
|
[4] |
Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974-1980(2015)
|
[5] |
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414-416(2017).
|
[6] |
G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis, "Single-cell RNA-seq denoising using a deep count autoencoder", Nat Commun, vol. 10, no. 1, p. 390, Jan 232019, doi: 10.1038/s41467-018-07931-2.
|
[7] |
T. Tian, J. Wan, Q. Song, and Z. Wei, "Clustering single-cell RNA-seq data with a model-based deep learning approach", Nature Machine Intelligence, vol. 1, no. 4, pp. 191-198, 2019, doi: 10.1038/s42256-019-0037-0.
|
[8] |
T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", arXiv preprint arXiv:1609.02907, 2016.
|
[9] |
M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering", 2016.
|
[10] |
P. Velikovi, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, "Graph Attention Networks", 2017.
|
[11] |
S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, "Attention based spatial-temporal graph convolutional networks for traffic flow forecasting", in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, vol. 33, pp. 922-929.
|
[12] |
Song, S. Zheng, Z. Niu, Z.-H. Fu, Y. Lu, and Y. Yang, "Communicative Representation Learning on Attributed Molecular Graphs", presented at the IJCAI, 2020.
|
[13] |
D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, "Structural Deep Clustering Network", presented at the Proceedings of The Web Conference 2020, 2020.
|
[14] |
J. Rao, X. Zhou, Y. Lu, H. Zhao, and Y. Yang, "Imputing Single-cell RNA-seq data by combining Graph Convolution and Autoencoder Neural Networks", biorxiv, 2020, doi: 10.1101/2020.02.05.935296.
|
[15] |
Zeng Y, Zhou X, Rao J, et al. Accurately Clustering Single-cell RNA-seq data by Capturing Structural Relations between Cells through Graph Convolutional Network[C]//2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2020.
|
[16] |
Kipf T N, Welling M. Variational Graph Auto-Encoders[J]. 2016.
|
[17] |
T. Kipf and M. Welling, "Variational graph auto-encoders", NIPS Workshop on Bayesian Deep Learning, 2016.
|
[18] |
M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering", in Advances in Neural Information Processing Systems, 2016, pp. 3844-3852.
|
[19] |
Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical Society, 1997.
|
[20] |
Chen M, Wei Z, Huang Z, et al. Simple and Deep Graph Convolutional Networks[J]. 2020.
|
[21] |
Li Q, Han Z, Wu X M. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning[J]. 2018.
|
[22] |
M. Krzak, Y. Raykov, A. Boukouvalas, L. Cutillo, and C. Angelini, "Benchmark and Parameter Sensitivity Analysis of Single-Cell RNA Sequencing Clustering Methods", Front Genet, vol. 10, p. 1253, 2019, doi: 10.3389/fgene.2019.01253.
|
[23] |
J. M. Zhang, J. Fan, H. C. Fan, D. Rosenfeld, and D. N. Tse, "An interpretable framework for clustering single-cell RNA-Seq datasets", BMC Bioinformatics, vol. 19, no. 1, p. 93, Mar 92018, doi: 10.1186/s12859-018-2092-7.
|
[24] |
V. Y. Kiselev et al., "SC3:consensus clustering of single-cell RNA-seq data", Nat Methods, vol. 14, no. 5, pp. 483-486, May 2017, doi: 10.1038/nmeth.4236.
|
[25] |
L. van der Maaten and G. Hinton, "Visualizing data using t-SNE,"Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579-2605, 2008.
|
[1] | HUANG Bohua, YANG Bohang, LI Minggui, GUO Zhongkai, MAO Jianyou, WANG Hong. An Improved Method for MAD Gross Error Detection of Clock Error[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 747-752. DOI: 10.13203/j.whugis20190430 |
[2] | WANG Leyang, GU Wangwang, ZHAO Xiong, XU Guangyu, GAO Hua. Determination of Relative Weight Ratio of Joint Inversion Using Bias-Corrected Variance Component Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 508-516. DOI: 10.13203/j.whugis20200216 |
[3] | IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287 |
[4] | ZHAO Jianhu, WU Jingwen, ZHAO Xinglei, ZHOU Fengnian. A Correction Model for Depth Bias in Airborne LiDAR Bathymetry Systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 328-333. DOI: 10.13203/j.whugis20160481 |
[5] | LU Tieding, YANG Yuanxi, ZHOU Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185-192, 199. DOI: 10.13203/j.whugis20140330 |
[6] | LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107 |
[7] | SUN Wenchuan, BAO Jingyang, JIN Shaohua, XIAO Fumin, ZHANG Zhiwei. A Re-calibration Method for Roll Bias of Multi-beam Sounding System[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1440-1444. DOI: 10.13203/j.whugis20140481 |
[8] | ZOU Qin, LI Qingquan. Target-points MST for Pavement Crack Detection[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 71-75. |
[9] | HUANG Xianyuan, ZHAI Guojun, SUI Lifen, HUANG Motao. Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191. |
[10] | XU Caijun, WANG Jianglin. Linear Minimum Mean Square Error Estimation for Wet Delay Correction in SAR Interferogram[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 757-760. |