Citation: | DENG Bo, XU Qiang, DONG Xiujun, JU Yuanzhen, HU Wuting. Automatic Detection of Deformation Cracks in Slopes Fused with Point Cloud and Digital Image[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1296-1311. DOI: 10.13203/j.whugis20220098 |
[1] |
黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
Huang Runqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
|
[2] |
许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112. doi: 10.3321/j.issn:1000-6915.2008.06.003
Xu Qiang, Tang Minggao, Xu Kaixiang, et al. Research on Space-Time Evolution Laws and Early Warning-Prediction of Landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104-1112. doi: 10.3321/j.issn:1000-6915.2008.06.003
|
[3] |
许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7): 957-966. doi: 10.13203/j.whugis20190088
Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. doi: 10.13203/j.whugis20190088
|
[4] |
张南朝. 基于数字图像的路面裂缝识别系统研发[D]. 郑州: 郑州大学, 2015.
Zhang Nanchao. Research and Development of Pavement Crack Identification System Based on Digital Image[D]. Zhengzhou: Zhengzhou University, 2015.
|
[5] |
唐钱龙, 谭园, 彭立敏, 等. 基于数字图像技术的隧道衬砌裂缝识别方法研究[J]. 铁道科学与工程学报, 2019, 16(12): 3041-3049. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201912018.htm
Tang Qianlong, Tan Yuan, Peng Limin, et al. On Crack Identification Method for Tunnel Linings Based on Digital Image Technology[J]. Journal of Railway Science and Engineering, 2019, 16(12): 3041-3049. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201912018.htm
|
[6] |
刘盛鑫. 基于全卷积神经网络的砌块砌体墙裂缝识别技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Liu Shengxin. Research on Crack Identification Technology of Block Masonry Wall Based on Full Convolution Neural Network[D]. Harbin: Harbin Institute of Technology, 2020.
|
[7] |
Zhang F, Hu Z Q, Yang K, et al. The Surface Crack Extraction Method Based on Machine Learning of Image and Quantitative Feature Information Acquisition Method[J]. Remote Sensing, 2021, 13(8): 1534. doi: 10.3390/rs13081534
|
[8] |
Al-Rawabdeh A, He F N, Moussa A, et al. Using an Unmanned Aerial Vehicle-Based Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition[J]. Remote Sensing, 2016, 8(2): 95. doi: 10.3390/rs8020095
|
[9] |
董秀军, 王栋, 冯涛. 无人机数字摄影测量技术在滑坡灾害调查中的应用研究[J]. 地质灾害与环境保护, 2019, 30(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201903014.htm
Dong Xiujun, Wang Dong, Feng Tao. Research on the Application of Unmanned Aerial Vehicle Digital Photogrammetry in Landslide Disaster Investigation[J]. Journal of Geological Hazards and Environment Preservation, 2019, 30(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201903014.htm
|
[10] |
Samar R, Rehman A. Autonomous Terrain-Following for Unmanned Air Vehicles[J]. Mechatronics, 2011, 21(5): 844-860. doi: 10.1016/j.mechatronics.2010.09.010
|
[11] |
Kosari A, Maghsoudi H, Lavaei A, et al. Optimal Online Trajectory Generation for a Flying Robot for Terrain Following Purposes Using Neural Network[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(6): 1124-1141. doi: 10.1177/0954410014545797
|
[12] |
Reza A M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35-44. doi: 10.1023/B:VLSI.0000028532.53893.82
|
[13] |
Tomasi C, Manduchi R. Bilateral Filtering for Gray and Color Images[C]//The 6th International Conference on Computer Vision, Bombay, India, 2002.
|
[14] |
T/CAGHP 001-2018. 地质灾害分类分级标准[S]. 北京: 中国地质灾害防治工程行业协会, 2018.
T/CAGHP 001-2018. Standard of Classification for Geological Hazards[S]. Beijing: China Geological Disaster Prevention Engineering Industry Association, 2018.
|
[15] |
康建荣. 山区采动裂缝对地表移动变形的影响分析[J]. 岩石力学与工程学报, 2008, 27(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801009.htm
Kang Jianrong. Analysis of Effect of Fissures Caused by Underground Mining on Ground Movement and Deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801009.htm
|
[16] |
陈志新, 袁志辉, 彭建兵, 等. 渭河盆地地裂缝发育基本特征[J]. 工程地质学报, 2007, 15(4): 441-447. doi: 10.3969/j.issn.1004-9665.2007.04.002
Chen Zhixin, Yuan Zhihui, Peng Jianbing, et al. Basic Characteristics About Ground Fractures' Development of Weihe Basin[J]. Journal of Engineering Geology, 2007, 15(4): 441-447. doi: 10.3969/j.issn.1004-9665.2007.04.002
|
[17] |
Zhou K, Hou Q M, Wang R, et al. Real-Time KD-Tree Construction on Graphics Hardware[J]. ACM Transactions on Graphics, 2012, 27(5): 1-11.
|
[18] |
彭博, 蒋阳升, 韩世凡, 等. 路面裂缝图像自动识别算法综述[J]. 公路交通科技, 2014, 31(7): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201407004.htm
Peng Bo, Jiang Yangsheng, Han Shifan, et al. A Review of Automatic Pavement Crack Image Recognition Algorithms[J]. Journal of Highway and Transportation Research and Development, 2014, 31(7): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201407004.htm
|
[19] |
Kanopoulos N, Vasanthavada N, Baker R L. Design of an Image Edge Detection Filter Using the Sobel Operator[J]. IEEE Journal of Solid-State Circuits, 1988, 23(2): 358-367.
|
[20] |
Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation[J]. Caspian Journal of Internal Medicine, 2013, 4(2): 627-635.
|
[1] | ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311 |
[2] | ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373 |
[3] | CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479. |
[4] | ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707. |
[5] | AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54. |
[6] | LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358. |
[7] | YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777. |
[8] | WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487. |
[9] | ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399. |
[10] | WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990. |