LIU Wen, HUANG Zhengdong, ZHAN Qingming, SHAO Zhenfeng, ZHAO Fuyun, GUO Renzhong. Computational Fluid Dynamics Simulation of the Influence of Street Interface Density on Natural Ventilation and Pollutants Diffusion in Urban Streets[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1672-1682. DOI: 10.13203/j.whugis20210711
Citation: LIU Wen, HUANG Zhengdong, ZHAN Qingming, SHAO Zhenfeng, ZHAO Fuyun, GUO Renzhong. Computational Fluid Dynamics Simulation of the Influence of Street Interface Density on Natural Ventilation and Pollutants Diffusion in Urban Streets[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1672-1682. DOI: 10.13203/j.whugis20210711

Computational Fluid Dynamics Simulation of the Influence of Street Interface Density on Natural Ventilation and Pollutants Diffusion in Urban Streets

More Information
  • Received Date: October 07, 2023
  • Available Online: November 22, 2022
  • Objectives 

    Prior to the advent of low-carbon travel, the air pollution arising from vehicle exhaust emissions within the urban canopy layer has remained a significant challenge in the governance of urban atmospheric environments.

    Methods 

    This paper presents a series of three-dimensional physical models representing typical urban streets, with varying street interface density (SID). The models employ the computational fluid dynamics (CFD) simulations to assess the impact of SID on airflow patterns and pollutant dispersion. Metrics such as air exchange rate, purging flow rate, average residence time, and pollutant concentration in pedestrian areas are utilized to evaluate the natural ventilation performance and pollutant diffusion capacity across urban streets with different SIDs.

    Results 

    The findings illustrate that the CFD simulation approach is an effective means of elucidating the intricate details of airflow and pollutant dispersion within urban street spaces. A reduction in SID on both sides of urban streets has been demonstrated to enhance natural ventilation and air quality. Notably, a decrease in the upstream SID has a more pronounced effect on improving air quality compared to that of the downstream. The arrangement of buildings adjacent to urban streets significantly impacts the overall ventilation performance and pollutant dispersion capacity under different SIDs, with a critical upstream SID value of approximately 0.8.

    Conclusions 

    The proposed CFD simulation method can facilitate a comprehensive understanding of airflow and pollutant dispersal mechanisms, thereby enabling more scientific planning and design control of urban street spaces. Furthermore, it helps to provide proactive strategies for residents residing near urban streets to cope with traffic-related air pollution risks.

  • [1]
    Ding W W, Tong Z Y. An Approach for Simulating the Street Spatial Patterns[J]. Building Simulation, 2011, 4(4): 321-333.
    [2]
    Nyberg F, Gustavsson P, Järup L, et al. Urban Air Pollution and Lung Cancer in Stockholm[J]. Epidemiology, 2000, 11(5): 487-495.
    [3]
    Gallagher J, Lago C. How Parked Cars Affect Pollutant Dispersion at Street Level in an Urban Street Canyon? A CFD Modelling Exercise Assessing Geometrical Detailing and Pollutant Decay Rates[J]. The Science of the Total Environment, 2019, 651(2): 2410-2418.
    [4]
    Li X L, Wang J S, Tu X D, et al. Vertical Variations of Particle Number Concentration and Size Distribution in a Street Canyon in Shanghai, China[J]. The Science of the Total Environment, 2007, 378(3): 306-316.
    [5]
    Hagler G S W, Baldauf R W, Thoma E D, et al. Ultrafine Particles near a Major Roadway in Raleigh, North Carolina: Downwind Attenuation and Correlation with Traffic-Related Pollutants[J]. Atmospheric Environment, 2009, 43(6): 1229-1234.
    [6]
    Gu Z L, Zhang Y W, Cheng Y, et al. Effect of Uneven Building Layout on Air Flow and Pollutant Dispersion in Non-uniform Street Canyons[J]. Building and Environment, 2011, 46(12): 2657-2665.
    [7]
    唐洁, 张双喜, 邵振峰, 等. 屋顶形状对街道峡谷微环境影响的数值模拟研究[J]. 武汉大学学报(信息科学版), 2020, 45(6): 888-894.

    Tang Jie, Zhang Shuangxi, Shao Zhenfeng, et al. Impact of Roof Shape on Micro-Environment in Street Canyons by Numerical Simulation[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 888-894.
    [8]
    Liu H Z, Liang B, Zhu F R, et al. A Laboratory Model for the Flow in Urban Street Canyons Induced by Bottom Heating[J]. Advances in Atmospheric Sciences, 2003, 20(4): 554-564.
    [9]
    Allegrini J, Dorer V, Carmeliet J. Wind Tunnel Measurements of Buoyant Flows in Street Canyons[J]. Building and Environment, 2013, 59: 315-326.
    [10]
    Oke T R. Street Design and Urban Canopy Layer Climate[J]. Energy and Buildings, 1988, 11(1/2/3): 103-113.
    [11]
    Chan A T, So E S P, Samad S C. Strategic Guidelines for Street Canyon Geometry to Achieve Sustainable Street Air Quality[J]. Atmospheric Environment, 2001, 35(24): 4089-4098.
    [12]
    Mei S J, Luo Z W, Zhao F Y, et al. Street Canyon Ventilation and Airborne Pollutant Dispersion: 2-D Versus 3-D CFD Simulations[J]. Sustainable Cities and Society, 2019, 50: 101700.
    [13]
    杨方, 钟珂, 亢燕铭. 街道峡谷对称性对污染物扩散的影响[J]. 中国环境科学, 2015, 35(3): 706-713.

    Yang Fang, Zhong Ke, Kang Yanming. Effects of Street Geometric Configurations on the Pollutant Dispersion Around the Canyons[J]. China Environmental Science, 2015, 35(3): 706-713.
    [14]
    周钰, 张玉坤, 苑思楠. 街道界面心理认知的量化研究[J]. 建筑学报, 2012(S2): 126-129.

    Zhou Yu, Zhang Yukun, Yuan Sinan. Quantitative Study on Psychological Cognition of Street Interface[J]. Architectural Journal, 2012(S2): 126-129.
    [15]
    周钰, 赵建波, 张玉坤. 街道界面密度与城市形态的规划控制[J]. 城市规划, 2012, 36(6): 28-32.

    Zhou Yu, Zhao Jianbo, Zhang Yukun. Street Interface Density and Planning Control of Urban Form[J]. City Planning Review, 2012, 36(6): 28-32.
    [16]
    Kim J. A Numerical Study of the Effects of Ambient Wind Direction on Flow and Dispersion in Urban Street Canyons Using the RNG K-epsilon Turbulence Model[J]. Atmospheric Environment, 2004, 38(19): 3039-3048.
    [17]
    Yassin M F. Numerical Modeling on Air Quality in an Urban Environment with Changes of the Aspect Ratio and Wind Direction[J]. Environmental Science and Pollution Research, 2013, 20(6): 3975-3988.
    [18]
    Hang J, Li Y G. Wind Conditions in Idealized Building Clusters: Macroscopic Simulations Using a Porous Turbulence Model[J]. Boundary⁃Layer Meteorology, 2010, 136(1): 129-159.
    [19]
    Lien F S, Yee E, Wilson J D. Numerical Modelling of the Turbulent Flow Developing Within and over a 3-D Building Array, Part Ⅱ: A Mathematical Foundation for a Distributed Drag Force Approach[J]. Boundary-Layer Meteorology, 2005, 114(2): 245-285.
    [20]
    Tominaga Y, Mochida A, Yoshie R, et al. AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment Around Buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1749-1761.
    [21]
    Tominaga Y, Stathopoulos T. CFD Modeling of Pollution Dispersion in a Street Canyon: Comparison Between LES and RANS[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 340-348.
    [22]
    Meroney R N, Pavageau M, Rafailidis S, et al. Study of Line Source Characteristics for 2-D Physical Modelling of Pollutant Dispersion in Street Canyons[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62(1), 37-56.
    [23]
    Chan L Y, Zeng L M, Qin Y, et al. CO Concentration Inside the Cross Harbor Tunnel in Hong Kong, China[J]. Environment International, 1996, 22(4): 405-409.
    [24]
    Gromke C, Buccolieri R, Di Sabatino S, et al. Dispersion Study in a Street Canyon with Tree Planting by Means of Wind Tunnel and Numerical Investigations-Evaluation of CFD Data with Experimental Data[J]. Atmospheric Environment, 2008, 42(37): 8640-8650.
    [25]
    Hang J, Wang Q, Chen X Y, et al. City Breathability in Medium Density Urban-Like Geometries Evaluated Through the Pollutant Transport Rate and the Net Escape Velocity[J]. Building and Environment, 2015, 94: 166-182.
    [26]
    Bady M, Kato S, Huang H. Towards the Application of Indoor Ventilation Efficiency Indices to Evaluate the Air Quality of Urban Areas[J]. Building and Environment, 2008, 43(12): 1991-2004.
  • Related Articles

    [1]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [2]XU Yaming, SUN Fuyu, ZHANG Peng, WANG Jinling. A Pseudolite Positioning Approach Utilizing Carrier Phase Difference[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1445-1450. DOI: 10.13203/j.whugis20170033
    [3]ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045
    [4]ZHANG Tisheng, ZHENG Jiansheng, ZHANG Hongping, YAN Kunlun. Oscillator Effects on Carrier-Phase Measurements in GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1413-1416.
    [5]LIU Ning, XIONG Yongliang, XU Shaoguang. Detection and Repair of Cycle Slips Using Improved TurboEdit Algorithm and Chebyshev Polynomial Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1500-1503.
    [6]WENG Yongzhi, WU Jie. Time-differenced Carrier Phase/SINS Tight Integration Algorithm in the High-precision Navigation for High Earth Orbit Spacecraft[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1195-1199.
    [7]WU Jizhong, SHI Chuang, FANG Rongxin. Improving the Single Station Data Cycle Slip Detection Approach TurboEdit[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 29-33.
    [8]WANG Aisheng, OU Jikun. Detecting and Repairing Cycle Slips in GPS Single Frequency Carrier Phase Using Lowpass[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1079-1081.
    [9]WANG Fuhong, LIU Jiyu. A New Algorithm Detecting Cycle Slips in Satellite-Borne GPS Carrier Phase Measurements for Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 772-774.
    [10]Han Shaowei. Equivalence of the Methods for GPS Data Processing with Carrier Phase Observations[J]. Geomatics and Information Science of Wuhan University, 1991, 16(1): 68-77.
  • Cited by

    Periodical cited type(12)

    1. 董可,冯威,董兴干,黄丁发. 高频GNSS数据MGF周跳解算方法的质量控制. 武汉大学学报(信息科学版). 2023(02): 268-276 .
    2. 姜毅,石绍杰. 基于载噪比加权的BDS周跳探测方法研究. 大地测量与地球动力学. 2023(06): 575-580 .
    3. 范晓曼,黄劲松. 一种基于卡尔曼滤波的RTK定位周跳探测方法. 测绘地理信息. 2023(04): 65-69 .
    4. 朱云鹏,周松光. 一种GPS的双频周跳探测算法. 河南科技. 2022(03): 10-13 .
    5. 吕震,王振杰,单瑞,刘金萍. Galileo四频数据周跳探测与修复方法. 导航定位学报. 2022(03): 69-77 .
    6. 韩子彬,白燕,张峰,郭燕铭,卢晓春. 星地双向时差测量系统周跳探测与修复算法. 全球定位系统. 2022(03): 65-72 .
    7. 刘国超,谢小摧,周志远,曾令响. 双频载波相位求差法在BDS周跳探测与修复中的应用. 工程勘察. 2021(01): 54-57 .
    8. 蔡成林,沈文波,曾武陵,于洪刚,谢小平. 多普勒积分重构与STPIR联合周跳探测与修复. 测绘学报. 2021(02): 160-168 .
    9. 张晨晰,党亚民,薛树强,张龙平. 一种基于TurboEdit的BDS周跳探测改进方法. 测绘科学. 2021(06): 47-52+64 .
    10. 祝会忠,王煊,王楚扬,徐爱功,朱广彬. BDS中长距离基线高精度静态定位方法与实验. 测绘科学. 2020(03): 8-14 .
    11. 沈朋礼,成芳,肖厦,肖秋龙,卢晓春. 北斗三号卫星的周跳探测与修复算法. 测绘科学. 2019(11): 9-14+21 .
    12. 曲家庆,林加涛. 高精度双频卫星导航接收机相对定位方法. 制导与引信. 2018(02): 46-49 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return