GUO Fei, CHEN Weijie, ZHU Yifan, ZHANG Xiaohong. A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 715-721. DOI: 10.13203/j.whugis20210644
Citation: GUO Fei, CHEN Weijie, ZHU Yifan, ZHANG Xiaohong. A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 715-721. DOI: 10.13203/j.whugis20210644

A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency

More Information
  • Received Date: February 10, 2022
  • Available Online: July 21, 2022
  • Objectives 

    Global navigation satellite system (GNSS) interferometric reflectometry (GNSS-IR) is a new passive remote sensing technique for determining surface environment parameters, which places an important part in the inversion of earth's surface properties, such as soil moisture monitoring, snow parameter retrieval, and vegetation remote sensing, etc. GNSS-IR offers several benefits over the traditional soil moisture inversion approach, including all-weather capability, high temporal precision, and cheap cost.

    Methods 

    Considering the fact that the existing soil moisture inversion algorithms only utilize one single feature of GNSS reflected signal and from the perspective of increasing data availability, this paper proposes a GNSS-IR soil moisture inversion approach that integrates multi-type feature data by utilizing phase, amplitude, and frequency extracted GNSS signals reflected by soil. The main work is to effectively filter all available features extracted from the original GNSS signal-to-noise ratio observations. The feasibility and effect of the suggested method are compared and evaluated using three machine learning models, including least squares support vector machine (LSSVM), random forest (RF), and back propagation neural network (BPNN).

    Results 

    Comparing the inversion effects of above three models, BPNN model has the best inversion effect, followed by RF model, and LSSVM model is the worst. The results show that the correlation coefficients between the reference value and soil moisture inversed by the multi-feature fusion method LSSVM, RF, and BPNN models are 0.830, 0.953, and 0.980, respectively, and the corresponding root mean square errors are 0.045, 0.035 and 0.032 cm3/cm3.

    Conclusions 

    Compared with the single feature inversion method, both the accuracy and correlation coefficient of soil moisture inversion increase significantly. The results demonstrated that the proposed method has higher inversion accuracy and reliability than the single feature inversion method.

  • [1]
    张双成, 戴凯阳, 南阳,等. GNSS-MR技术用于雪深探测的初步研究[J]. 武汉大学学报(信息科学版), 2018, 43(2): 234-240.

    Zhang Shuangcheng, Dai Kaiyang, Yang Nan, et al. Preliminary Research on GNSS-MR for Snow Depth[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 234-240.
    [2]
    吴继忠, 王天, 吴玮. 利用GPS-IR监测土壤含水量的反演模型[J]. 武汉大学学报(信息科学版), 2018, 43(6):887-892.

    Wu Jizhong, Wang Tian, Wu Wei. Retrieval Model for Soil Moisture Content Using GPS-Interferometric Reflectometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 887-892.
    [3]
    邓英春,许永辉.土壤水分测量方法研究综述[J].水文,2007(4):20-24.

    Deng Yingchun, Xu Yonghui. A Review of Research on Soil Moisture Measurement Methods [J]. Hydrology, 2007(4):20-24.
    [4]
    Small EE,Larson K M,Chew C C, et al. Validation of GPS-IR Soil Moisture Retrievals: Comparison of Different Algorithms to Remove Vegetation Effects[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(10): 4759-4770.
    [5]
    Larson K M, Braun J J, Small E E, et al. GPS Multipath and Its Relation to Near-Surface Soil Moisture Content[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010, 3(1):91-99.
    [6]
    Larson K M, Small E E, Gutmann E D, et al. Use of GPS Receivers as a Soil Moisture Network for Water Cycle Studies[J]. Geophysical Research Letters, 2008, 35(24) : L24405-1.
    [7]
    Vey S, Güntner A, Wickert J, et al. Long-Term Soil Moisture Dynamics Derived from GNSS Interferometric Reflectometry: A Case Study for Sutherland, South Africa[J]. GPS Solutions, 2016, 20(4):641-654.
    [8]
    Chew CC, Small E E, Larson K M. An Algorithm for Soil Moisture Estimation Using GPS-Interferometric Reflectometry for Bare and Vegetated Soil[J]. GPS Solutions, 2016, 20(3): 525-537.
    [9]
    Chew C C, Small E E, Larson K M, et al. Effects of Near-Surface Soil Moisture on GPS SNR Data: Development of a Retrieval Algorithm for Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 537-543.
    [10]
    丰秋林. 基于机器学习的 GNSS 反射信号土壤湿度反演方法研究[D]. 徐州: 中国矿业大学, 2019.

    Feng Qiulin. Soil Moisture Retrieval Using GNSS Reflected Signal Based on Machine Learning[D]. Xuzhou: China University of Mining and Technology, 2019.
    [11]
    Zhang S B, Roussel N, Boniface K, et al. Use of Reflected GNSS SNR Data to Retrieve Either Soil Moisture or Vegetation Height from a Wheat Crop[J]. Hydrology and Earth System Sciences, 2017, 21(9): 4767-4784.
    [12]
    Ren C, Liang Y J, Lu X J, et al. Research on the Soil Moisture Sliding Estimation Method Using the LS-SVM Based on Multi-Satellite Fusion[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2104-2119.
    [13]
    孙波, 梁勇, 汉牟田, 等. 基于 GA-SVM 的 GNSS-IR 土壤湿度反演方法[J]. 北京航空航天大学学报, 2019, 45(3): 486-492.

    Sun Bo, Liang Yong, Han Mutian, et al. GNSS-IR Soil Moisture Inversion Method Based on GA-SVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 486-492.
    [14]
    陈堃, 沈飞, 曹新运, 等. 基于深度置信网络的 GNSS-IR 土壤湿度反演[J]. 测绘通报, 2020(9): 100-105.

    Chen Kun, Shen Fei, Cao Xinyun, et al. Retrieving GNSS-IR Soil Moisture Based on Deep Belief Network[J]. Bulletin of Surveying and Mapping, 2020(9): 100-105.
    [15]
    贾燕, 金双根, 肖智宇, 等. 全球导航卫星系统反射测量土壤水分遥感:现状与机遇[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1784-1799.

    Jia Yan, Jin Shuanggen, Xiao Zhiyu, et al. Soil Moisture Remote Sensing Using Global Navigation Satellite System-Reflectometry: Current Status and Opportunity[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1784-1799.
    [16]
    Suykens J, Lukas L, Van Dooren P. Least Squares Support Vector Machine Classifiers: A Large Scale Algorithm[C]//European Conference on Circuit Theory and Design(ECCTD'99),Stresa,Italy,1999.
    [17]
    Suykens J A K, Brabanter J D, Lukas L, et al. Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation[J]. Neurocomputing, 2002, 48(1⁃4):85-105.
    [18]
    孙波,张弛,尹世超,等.基于PSO-RF 的GNSS-IR土壤湿度反演方法研究[J]. 无线电工程, 2021, 51(10): 1080-1085.

    Sun Bo,Zhang Chi,Yin Shichao,et al.Research on GNSS-IR Soil Moisture Inversion Method Based on PSO-RF[J]. Radio Engineering, 2021, 51(10):1080-1085.
    [19]
    Liang Y J, Chao R, Wang H Y, et al. Research on Soil Moisture Inversion Method Based on GA-BP Neural Network Model[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2087- 2103.
  • Related Articles

    [1]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [2]XU Yaming, SUN Fuyu, ZHANG Peng, WANG Jinling. A Pseudolite Positioning Approach Utilizing Carrier Phase Difference[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1445-1450. DOI: 10.13203/j.whugis20170033
    [3]ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045
    [4]ZHANG Tisheng, ZHENG Jiansheng, ZHANG Hongping, YAN Kunlun. Oscillator Effects on Carrier-Phase Measurements in GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1413-1416.
    [5]LIU Ning, XIONG Yongliang, XU Shaoguang. Detection and Repair of Cycle Slips Using Improved TurboEdit Algorithm and Chebyshev Polynomial Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1500-1503.
    [6]WENG Yongzhi, WU Jie. Time-differenced Carrier Phase/SINS Tight Integration Algorithm in the High-precision Navigation for High Earth Orbit Spacecraft[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1195-1199.
    [7]WU Jizhong, SHI Chuang, FANG Rongxin. Improving the Single Station Data Cycle Slip Detection Approach TurboEdit[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 29-33.
    [8]WANG Aisheng, OU Jikun. Detecting and Repairing Cycle Slips in GPS Single Frequency Carrier Phase Using Lowpass[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1079-1081.
    [9]WANG Fuhong, LIU Jiyu. A New Algorithm Detecting Cycle Slips in Satellite-Borne GPS Carrier Phase Measurements for Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 772-774.
    [10]Han Shaowei. Equivalence of the Methods for GPS Data Processing with Carrier Phase Observations[J]. Geomatics and Information Science of Wuhan University, 1991, 16(1): 68-77.
  • Cited by

    Periodical cited type(12)

    1. 董可,冯威,董兴干,黄丁发. 高频GNSS数据MGF周跳解算方法的质量控制. 武汉大学学报(信息科学版). 2023(02): 268-276 .
    2. 姜毅,石绍杰. 基于载噪比加权的BDS周跳探测方法研究. 大地测量与地球动力学. 2023(06): 575-580 .
    3. 范晓曼,黄劲松. 一种基于卡尔曼滤波的RTK定位周跳探测方法. 测绘地理信息. 2023(04): 65-69 .
    4. 朱云鹏,周松光. 一种GPS的双频周跳探测算法. 河南科技. 2022(03): 10-13 .
    5. 吕震,王振杰,单瑞,刘金萍. Galileo四频数据周跳探测与修复方法. 导航定位学报. 2022(03): 69-77 .
    6. 韩子彬,白燕,张峰,郭燕铭,卢晓春. 星地双向时差测量系统周跳探测与修复算法. 全球定位系统. 2022(03): 65-72 .
    7. 刘国超,谢小摧,周志远,曾令响. 双频载波相位求差法在BDS周跳探测与修复中的应用. 工程勘察. 2021(01): 54-57 .
    8. 蔡成林,沈文波,曾武陵,于洪刚,谢小平. 多普勒积分重构与STPIR联合周跳探测与修复. 测绘学报. 2021(02): 160-168 .
    9. 张晨晰,党亚民,薛树强,张龙平. 一种基于TurboEdit的BDS周跳探测改进方法. 测绘科学. 2021(06): 47-52+64 .
    10. 祝会忠,王煊,王楚扬,徐爱功,朱广彬. BDS中长距离基线高精度静态定位方法与实验. 测绘科学. 2020(03): 8-14 .
    11. 沈朋礼,成芳,肖厦,肖秋龙,卢晓春. 北斗三号卫星的周跳探测与修复算法. 测绘科学. 2019(11): 9-14+21 .
    12. 曲家庆,林加涛. 高精度双频卫星导航接收机相对定位方法. 制导与引信. 2018(02): 46-49 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return