XU Tianhe, YANG Yuanyuan, MU Dapeng, YIN Peng. Causes of Coastal Sea Level Change[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1750-1757. DOI: 10.13203/j.whugis20210643
Citation: XU Tianhe, YANG Yuanyuan, MU Dapeng, YIN Peng. Causes of Coastal Sea Level Change[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1750-1757. DOI: 10.13203/j.whugis20210643

Causes of Coastal Sea Level Change

Funds: 

The National Natural Science Foundation of China 42192534

The National Natural Science Foundation of China 41904081

the National Key Research and Development Program of China 2020YFB0505800

More Information
  • Author Bio:

    XU Tianhe, PhD, professor, specializes in satellite geodesy and geodetic data processing. E-mail: thxu@sdu.edu.cn

  • Received Date: March 29, 2022
  • Available Online: April 20, 2022
  • Published Date: October 04, 2022
  •   Objectives  Coastal sea level rise poses direct threats to human livelihood. It is of scientific importance to understand the causes and provide useful strategies for adapting sea level rise. This paper aims to investigate the causes of coastal sea level change using satellite altimetry, satellite time-variable gravity, and Argo floats.
      Methods  Given that time-variable gravity suffers from serious leakage issue over coastal area, we use land mass variations from a mascon solution to simulate the leakage from land into oceans, which is estimated to be 0.68 mm/a.
      Results  On seasonal and non-seasonal scales, satellite altimetry measurements are well explained by the summation of time-variable gravity and Argo floats, demonstrating the closure of coastal sea level change.Satellite altimetry suggests a rate of 3.32±0.45 mm/a for coastal sea level rise, but the summation of time-variable gravity and Argo floats yields a rate of 2.25±0.51 mm/a.
      Conclusions  The rate discrepancy is about 1 mm/a in coastal sea level budget, which suggestes that closing the sea level budget for coastal zone is challenged by uncertainties. The in situ measurements are sparse for Argo over coastal zone, which may underestimate the steric trend. Furthermore, leakage correction and vertical land motion may also cause uncertainties.
  • [1]
    Wei F, Min Z, Xu H Z, et al. Sea Level Variations in the South China Sea Inferred from Satellite Gravity, Altimetry, and Oceanographic Data[J]. Science China (Earth Sciences), 2012, 55(10): 1696-1701 doi: 10.1007/s11430-012-4394-3
    [2]
    王泽民, 张保军, 姜卫平, 等. 联合卫星测高、GRACE、海洋和气象资料研究南海海水质量变化[J]. 武汉大学学报·信息科学版, 2018, 43(4): 571-577 doi: 10.13203/j.whugis20150691

    Wang Zemin, Zhang Baojun, Jiang Weiping, et al. Ocean Mass Variations in the South China Sea Inferred from Satellite Altimetry, GRACE, Oceanographic and Meteorological Data[J] Geomatics and Information Science of Wuhan University, 2018, 43 (4): 571-577 doi: 10.13203/j.whugis20150691
    [3]
    Cazenave A, Dominh K, Guinehut S, et al. Sea Level Budget over 2003-2008: A Reevaluation from GRACE Space Gravimetry, Satellite Altimetry and Argo[J]. Global and Planetary Change, 2009, 65 (1/2): 83-88
    [4]
    Wang F W, Shen Y Z, Chen Q J, et al. Reduced Misclosure of Global Sea-Level Budget with Updated Tongji-Grace2018 Solution[J]. Scientific Reports, 2021, 11: 17667 doi: 10.1038/s41598-021-96880-w
    [5]
    Yi S, Sun W K, Heki K, et al. An Increase in the Rate of Global Mean Sea Level Rise Since 2010[J]. Geophysical Research Letters, 2015, 42(10): 3998- 4006 doi: 10.1002/2015GL063902
    [6]
    Dieng H B, Cazenave A, Meyssignac B, et al. New Estimate of the Current Rate of Sea Level Rise from a Sea Level Budget Approach[J]. Geophysical Research Letters, 2017, 44(8): 3744-3751 doi: 10.1002/2017GL073308
    [7]
    Church J A, White N J. A 20th Century Acceleration in Global Sea-Level Rise[J]. Geophysical Research Letters, 2006, 33: L01602
    [8]
    Nicholls R J, Cazenave A. Sea-Level Rise and Its Impact on Coastal Zones[J]. Science, 2010, 328 (5985): 1517-1520 doi: 10.1126/science.1185782
    [9]
    常乐, 孙文科. 全球及中国近海海平面变化趋势研究进展及展望[J]. 地球与行星物理论评, 2021, 52(3): 266-279 doi: 10.19975/j.dqyxx.2020-028

    Chang Le, Sun Wenke. Progress and Prospect of Sea Level Changes of Global and China Nearby Seas [J]. Reviews of Geophysics and Planetary Physics, 2021, 52(3): 266-279 doi: 10.19975/j.dqyxx.2020-028
    [10]
    Watson P J. A New Perspective on Global Mean Sea Level(GMSL) Acceleration[J]. Geophysical Research Letters, 2016, 43(12): 6478-6484 doi: 10.1002/2016GL069653
    [11]
    江敏, 钟敏, 冯伟, 等. 联合卫星测高和卫星重力数据研究热容海平面变化[J]. 海洋测绘, 2011, 31(6): 5-7 doi: 10.3969/j.issn.1671-3044.2011.06.002

    Jiang Min, Zhong Min, Feng Wei, et al. Study of Steric Sea Level Variations Combining the Data from Altimetry and GRACE[J]. Hydrographic Surveying and Charting, 2011, 31(6): 5-7 doi: 10.3969/j.issn.1671-3044.2011.06.002
    [12]
    张保军, 王泽民. 联合卫星重力、卫星测高和海洋资料研究全球海平面变化[J]. 武汉大学学报·信息科学版, 2015, 40(11): 1453-1459 doi: 10.13203/j.whugis20150230

    Zhang Baojun, Wang Zemin. Global Sea Level Variations Estimated from Satellite Altimetry, GRACE and Oceanographic Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1453-1459 doi: 10.13203/j.whugis20150230
    [13]
    陈威, 钟敏, 钟玉龙, 等. 2014—2016年El Nino期间全球平均海平面的年际变化及全球水循环的贡献[J]. 科学通报, 2017, 62(19): 2116-2124 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201719011.htm

    Chen Wei, Zhong Min, Zhong Yulong, et al. Global Mean Sea Level Variations and the Land Water Cycle at the Inter-Annual Scale During the 2014-2016 El Nino Episode[J]. Chinese Science Bulletin, 2017, 62(19): 2116-2124 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201719011.htm
    [14]
    Nerem R S, Beckley B D, Fasullo J T, et al. Climate-Change-Driven Accelerated Sea-Level Rise Detected in the Altimeter Era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2022-2025 doi: 10.1073/pnas.1717312115
    [15]
    冯贵平, 宋清涛, 蒋兴伟, 等. 卫星重力估计陆地水和冰川对全球海平面变化的贡献[J]. 海洋学报, 2018, 40(11): 85-95 doi: 10.3969/j.issn.0253-4193.2018.11.009

    Feng Guiping, Song Qingtao, Jiang Xingwei, et al. Land Water and Glaciers Contributions to Global Sea Level Change from Satellite Gravity Measurements[J]. Acta Oceanologica Sinica, 2018, 40 (11): 85-95 doi: 10.3969/j.issn.0253-4193.2018.11.009
    [16]
    Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to Understanding Climate Change[J]. Nature Climate Change, 2019, 9(5): 358-369 doi: 10.1038/s41558-019-0456-2
    [17]
    Velicogna I, Mohajerani Y, Geruo A, et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica from the GRACE and GRACE Followon Missions[J]. Geophysical Research Letters, 2020, 47(8): e2020GL087291
    [18]
    Mu D P, Xu T H, Xu G C. An Investigation of Mass Changes in the Bohai Sea Observed by GRACE[J]. Journal of Geodesy, 2020, 94(9): 79 doi: 10.1007/s00190-020-01408-1
    [19]
    Mu D P, Yan H M, Feng W, et al. GRACE Leakage Error Correction with Regularization Technique: Case Studies in Greenland and Antarctica[J]. Geophysical Journal International, 2017, 208(3) : 1775-1786
    [20]
    Chen J L, Tapley B, Wilson C, et al. Global Ocean Mass Change from GRACE and GRACE Follow-on and Altimeter and Argo Measurements[J]. Geophysical Research Letters, 2020, 47(22): e2020GL090656
    [21]
    Chen J L, Tapley B, Save H, et al. Quantification of Ocean Mass Change Using Gravity Recovery and Climate Experiment, Satellite Altimeter, and Argo Floats Observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 10212-10225
    [22]
    Peltier R W, Argus D F, Drummond R. Comment on"an Assessment of the ICE-6G_C(VM5a)Glacial Isostatic Adjustment Model"by Purcell et al. [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 2019-2028 doi: 10.1002/2016JB013844
    [23]
    Save H, Bettadpur S, Tapley B D. High-Resolution CSR GRACE RL05 Mascons[J]. Journal of Geophysical Research: Solid Earth, 2016, 121 (10): 7547-7569 doi: 10.1002/2016JB013007
    [24]
    Sun Y, Riva R, Ditmar P. Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J2 from a Combination of GRACE Data and Geophysical Models[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(11): 8352-8370 doi: 10.1002/2016JB013073
    [25]
    Yang Y Y, Zhong M, Feng W, et al. Detecting Regional Deep Ocean Warming Below 2 000 Meter Based on Altimetry, GRACE, Argo, and CTD Data[J]. Advances in Atmospheric Sciences, 2021, 38 (10): 1778-1790 doi: 10.1007/s00376-021-1049-3
    [26]
    Zhong Y L, Zhong M, Feng W, et al. Groundwater Depletion in the West Liaohe River Basin, China and Its Implications Revealed by GRACE and in situ Measurements[J]. Remote Sensing, 2018, 10 (4): 493 doi: 10.3390/rs10040493
    [27]
    Loomis B D, Rachlin K E, Luthcke S B. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise[J]. Geophysical Research Letters, 2019, 46(12): 6910- 6917 doi: 10.1029/2019GL082929
    [28]
    Loomis B D, Rachlin K E, Wiese D N, et al. Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change[J]. Geophysical Research Letters, 2020, 47 (3): e2019GL085488
    [29]
    Uebbing B, Kusche J, Rietbroek R, et al. Processing Choices Affect Ocean Mass Estimates from GRACE [J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 1029-1044 doi: 10.1029/2018JC014341
    [30]
    Watkins M M, Wiese D N, Yuan D N, et al. Improved Methods for Observing Earth's Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2648-2671
    [31]
    Scanlon B R, Zhang Z Z, Save H, et al. Global Models Underestimate Large Decadal Declining and Rising Water Storage Trends Relative to GRACE Satellite Data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1080-1089
    [32]
    Good S A, Martin M J, Rayner N A. EN4: Quality Controlled Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with Uncertainty Estimates[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6704-6716
    [33]
    Yi S, Song C Q, Wang Q Y, et al. The Potential of GRACE Gravimetry to Detect the Heavy Rainfall-Induced Impoundment of a Small Reservoir in the Upper Yellow River[J]. Water Resources Research, 2017, 53(8): 6562-6578
    [34]
    Barnoud A, Pfeffer J, Guérou A, et al. Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget since 2016[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092824

Catalog

    Article views (1113) PDF downloads (121) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return