DENG Kailiang, HUANG Motao, WU Taiqi, WANG Weiping, OUYANG Yongzhong, CHEN Xin, XIONG Xiong, LIU Min, WANG Xu. Downward Continuation of Gravity Using the Band-Limited Models for High-Order Radial Derivatives of Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 442-452. DOI: 10.13203/j.whugis20210630
Citation: DENG Kailiang, HUANG Motao, WU Taiqi, WANG Weiping, OUYANG Yongzhong, CHEN Xin, XIONG Xiong, LIU Min, WANG Xu. Downward Continuation of Gravity Using the Band-Limited Models for High-Order Radial Derivatives of Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 442-452. DOI: 10.13203/j.whugis20210630

Downward Continuation of Gravity Using the Band-Limited Models for High-Order Radial Derivatives of Gravity Anomaly

More Information
  • Received Date: May 21, 2022
  • Available Online: June 16, 2022
  • Objectives 

    Taylor series expansion is often used in the downward continuation of potential field, and its performance depends on the accuracy and reliability of vertical partial derivatives or radial partial derivatives (RPDs) of potential field parameters.

    Methods 

    In order to avoid the singularity on spherical boundary and the uncertainty to the computational results by using the closed analytic kernel function to solve the partial derivative, first, this paper considers the fact that all kinds of gravity observations behave as a type of limited spectrum bandwidth signal after being filtered, and proposes to express the kernel function of the Poisson integral for the external gravity anomaly by a spherical harmonic series expansion, which is truncated into a band-limited summation with the same spectrum range as the gravity observation. Then, we derive a set of band-limited formulas to calculate the high-order RPDs, which are modified and applied to the downward continuation of the gravity anomaly by Taylor series expansion.

    Results and Conclusions 

    The formulas are validated using the ultra-high-degree geopotential model EGM2008 by a two-stage procedure. The numerical tests of the band-limited formulas and the Taylor series expansion downward continuation model show that the proposed band-limited formulas have good reliability and validity, and are superior to other models in terms of stability and accuracy.

  • [1]
    Moritz H. Advanced Physical Geodesy[M]. Karlsruhe: Wichmann,1980
    [2]
    黄谟涛,欧阳永忠,刘敏,等. 融合海域多源重力数据的正则化点质量方法[J]. 武汉大学学报(信息科学版),2015,40(2): 170-175

    Huang Motao,Ouyang Yongzhong,Liu Min,et al. Regularization of Point-Mass Model for Multi-Source Gravity Data Fusion Processing[J]. Geoma⁃tics and Information Science of Wuhan University,2015,40(2):170-175
    [3]
    申文斌,鄢建国,晁定波. 重力场的局部虚拟向下延拓以及利用EGM96模型的模拟实验检验[J]. 武汉大学学报(信息科学版),2006,31(7): 589-593

    Shen Wenbin,Yan Jianguo,Chao Dingbo. Local Fictitious Downward Continuation of Gravity Field and Simulation Experiment Tests Using EGM96 Model[J]. Geomatics and Information Science of Wuhan University,2006,31(7): 589-593
    [4]
    Pitoňák M,Novák P,Eshagh M,et al. Downward Continuation of Gravitational Field Quantities to an Irregular Surface by Spectral Weighting[J]. Journal of Geodesy,2020,94: 62-88
    [5]
    Fedi M,Florio G. A Stable Downward Continuation by Using the ISVD Method[J]. Geophysical Journal International,2002,151(1): 146-156
    [6]
    Trompat H,Boschetti F,Hornby P. Improved Downward Continuation of Potential Field Data[J]. Exploration Geophysics,2003,34(4): 249-256
    [7]
    Heiskanen W A,Moritz H. Physical Geodesy[M]. San Francisco: W. H. Freeman,1967
    [8]
    Martinec Z. Stability Investigations of a Discrete Downward Continuation Problem for Geoid Determination in the Canadian Rocky Mountains[J]. Journal of Geodesy,1996,70: 805-828
    [9]
    Novák P,Heck B. Downward Continuation and Geoid Determination Based on Band-Limited Airborne Gravity Data[J]. Journal of Geodesy,2002,76: 269-278
    [10]
    Sansò F,Sideris M G. Geoid Determination: Theory and Methods[M]. Berlin,Heidelberg: Springer,2013
    [11]
    刘敏,黄谟涛,欧阳永忠,等. 顾及地形效应的重力向下延拓模型分析与检验[J]. 测绘学报,2016,45(5): 521-530

    Liu Min,Huang Motao,Ouyang Yongzhong,et al. Test and Analysis of Downward Continuation Models for Airborne Gravity Data with regard to the Effect of Topographic Height[J]. Acta Geodaetica et Cartographica Sinica,2016,45(5): 521-530
    [12]
    黄谟涛,刘敏,邓凯亮,等. 基于向上延拓的航空重力向下解析延拓解[J]. 地球物理学报,2018,61(12): 4746-4757

    Huang Motao,Liu Min,Deng Kailiang,et al. Analytical Solution of Downward Continuation for Airborne Gravimetry Based on Upward Continuation Method[J]. Chinese Journal of Geophysics,2018,61(12): 4746-4757
    [13]
    吴太旗,邓凯亮,黄谟涛,等. 一种改进的不适定问题奇异值分解法[J]. 武汉大学学报(信息科学版),2011,36(8): 900-903

    Wu Taiqi,Deng Kailiang,Huang Motao,et al. An Improved Singular Values Decomposition Method for Ill-Posed Problem[J]. Geomatics and Information Science of Wuhan University,2011,36(8): 900-903
    [14]
    Alberts B,Klees R. A Comparison of Methods for the Inversion of Airborne Gravity Data[J]. Journal of Geodesy,2004,78: 55-65
    [15]
    Bjerhammar A. A New Theory of Geodetic Gravity[M]. Stockholm: Tekniska Högskolan,1964
    [16]
    Dampney C N G. The Equivalent Source Technique[J]. Geophysics,1969,34: 39-53
    [17]
    宁津生,汪海洪,罗志才. 基于多尺度边缘约束的重力场信号的向下延拓[J]. 地球物理学报,2005,48(1): 63-68

    Ning Jinsheng,Wang Haihong,Luo Zhicai. Downward Continuation of Gravity Signals Based on the Multiscale Edge Constraint[J]. Chinese Journal of Geophysics,2005,48(1): 63-68
    [18]
    蒋涛,党亚民,章传银,等.基于矩谐分析的航空重力向下延拓[J]. 测绘学报,2013,42(4): 475-480

    Jiang Tao,Dang Yaming,Zhang Chuanyin,et al. Downward Continuation of Airborne Gravity Data Based on Rectangular Harmonic Analysis[J]. Acta Geodaetica et Cartographica Sinica,2013,42(4): 475-480
    [19]
    黄谟涛,欧阳永忠,刘敏,等. 海域航空重力测量数据向下延拓的实用方法[J]. 武汉大学学报(信息科学版),2014,39(10):1147-1152

    Huang Motao,Ouyang Yongzhong,Liu Min,et al. Practical Method for Downward Continuation of Airborne Gravity Data in the Sea Area[J]. Geomatics and Information Science of Wuhan University,2014,39(10):1147-1152
    [20]
    黄谟涛,宁津生,欧阳永忠,等. 联合使用位模型和地形信息的陆区航空重力向下延拓方法[J]. 测绘学报,2015,44(4): 355-362

    Huang Motao,Ning Jinsheng,Ouyang Yongzhong,et al. Downward Continuation of Airborne Gravimetry on Land Using Geopotential Model and Terrain Information[J]. Acta Geodaetica et Cartographica Sinica,2015,44(4): 355-362
    [21]
    Novák P,Kern M,Schwarz K P. Numerical Studies on the Harmonic Downward Continuation of Band-Limited Airborne Gravity[J]. Studia Geophysica et Geodaetica,2001,45: 327-345
    [22]
    Novák P,Kern M,Schwarz K P,et al. On Geoid Determination from Airborne Gravity[J].Journal of Geodesy,2003,76: 510-522
    [23]
    Kern M,Schwarz K P,Sneeuw N. A Study on the Combination of Satellite,Airborne and Terrestrial Gravity Data[J]. Journal of Geodesy,2003,77:217-225
    [24]
    Mansi A H,Capponi M,Sampietro D. Downward Continuation of Airborne Gravity Data by Means of the Change of Boundary Approach[J]. Pure and Applied Geophysics,2017,175(3): 977-988
    [25]
    王彦国,张凤旭,王祝文,等.位场向下延拓的泰勒级数迭代法[J].石油地球物理勘探,2011,45(4): 657-662

    Wang Yanguo,Zhang Fengxu,Wang Zhuwen,et al. Taylor Series Iteration for Downward Continuation of Potential Fields[J]. Oil Geophysical Prospecting,2011,45(4): 657-662
    [26]
    Ma G Q,Liu C,Huang D N,et al. A Stable Iterative Downward Continuation of Potential Field Data[J]. Journal of Applied Geophysics,2013,98:205-211
    [27]
    张冲,黄大年,刘杰. 重力场向下延拓Milne法[J]. 地球物理学报,2017,60(11): 4212-4220

    Zhang Chong,Huang Danian,Liu Jie. Milne Method for Downward Continuation of Gravity Field[J]. Chinese Journal of Geophysics,2017,60(11):4212-4220
    [28]
    Zhang Chong,Lu Qingtian,Yan Jiayong,et al. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields[J]. Geophysical Research Letters,2018,45: 3461-3470
    [29]
    Tran K V,Nguyen T N. A Novel Method for Computing the Vertical Gradients of the Potential Field: Application to Downward Continuation[J]. Geophy⁃sical Journal International,2020,220: 1316-1329
    [30]
    Wei Z. High-Order Radial Derivatives of Harmonic Function and Gravity Anomaly[J]. Journal of Physical Science and Application,2014,4(7):454-467
    [31]
    于锦海,朱灼文,彭富清. Molodensky边值问题中解析延拓法g1项的小波算法[J]. 地球物理学报,2001,44(1): 112-119

    Yu Jinhai,Zhu Zhuowen,Peng Fuqing. Wavelet Arithmetic of g1-Term in Molodensky's Boundary Value Problem[J]. Chinese Journal of Geophysics,2001,44(1): 112-119
    [32]
    Wong L,Gore R. Accuracy of Geodesy Heights from Modified Stokes Kernels[J]. Geophysical Journal International,1969,18(1): 81-91
    [33]
    Vaníček P,Featherstone W E. Performance of the Three Types of Stokes's Kernel in the Combined Solution for the Geoid[J]. Journal of Geodesy,1998,72(12): 684-697
    [34]
    Wang Y M,Saleh J,Li X,et al. The US Gravime⁃tric Geoid of 2009 (USGG2009): Model Development and Evaluation[J]. Journal of Geodesy,2012,86(3): 165-180

Catalog

    Article views (642) PDF downloads (46) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return