ZHANG Shuangcheng, ZHANG Yafei, SI Jinzhao, LUO Yong, YU Jing, LEI Kunchao, XU Qiang. Land Subsidence Situation Interpretation with Ascending and Descending InSAR After the Start of the South to North Water Transfer in Beijing[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1337-1346. DOI: 10.13203/j.whugis20210554
Citation: ZHANG Shuangcheng, ZHANG Yafei, SI Jinzhao, LUO Yong, YU Jing, LEI Kunchao, XU Qiang. Land Subsidence Situation Interpretation with Ascending and Descending InSAR After the Start of the South to North Water Transfer in Beijing[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1337-1346. DOI: 10.13203/j.whugis20210554

Land Subsidence Situation Interpretation with Ascending and Descending InSAR After the Start of the South to North Water Transfer in Beijing

More Information
  • Received Date: October 13, 2022
  • Available Online: July 21, 2022
  • Objectives 

    Land subsidence caused by long-term over-exploitation of groundwater is one of major problems in Beijing. Since the opening of the South-to-North Water Transfer Project, the problem of water shortage in Beijing has been greatly alleviated, and the pressure of land subsidence has been reduced to a certain extent.

    Methods 

    In order to analyze the development of land subsidence after the start of the South-to-North Water Transfer in Beijing, ascending and descending time-series interferometric synthetic aperture radar (InSAR) technique is used to monitor land subsidence in Beijing. First, the mean deformation velocity and cumulative deformation in line of sight in Beijing from January 2015 to December 2020 is obtained by the small baseline subset InSAR. Second, the robust least square fitting method is used to fuse the deformation results of the lifting rail, after that the global positioning system monitoring data are compared with the fusion results of lifting rail. Finally, the variation trend between the deformation results obtained by the robust least quadratic fitting and groundwater data is analyzed.

    Results 

    The deformation results show that the center of Beijing is basically stable and the deformation distribution is not uniform. The maximum ascending annual deformation velocity and the maximum ascending cumulative deformation amount reach -134 mm/a and -697 mm respectively. The maximum descending annual deformation velocity and the maximum descending cumulative deformation amount reach -135 mm/a and -734 mm respectively. And the fusion results obtained by the least square fitting method has reliability and accuracy.

    Conclusions 

    The subsidence rate in Beijing shows a decreasing trend with the gradual increase of groundwater level. In general, the middle route of South-to-North Water Transfer Project has alleviated the expansion trend of land subsidence in Beijing to a certain extent.

  • [1]
    程凌鹏, 王新惠, 张琦伟, 等. 南水进京对北京地面沉降的影响及趋势分析[J]. 人民黄河, 2018, 40(5): 93-97.

    Cheng Lingpeng, Wang Xinhui, Zhang Qiwei, et al. Influence of Transferring Yangtze River Water into Beijing on Ground Subsidence and Trend Analysis[J]. Yellow River, 2018, 40(5): 93-97.
    [2]
    穆晨波. 南水北调对北京市地面沉降影响分析[J]. 河北地质大学学报, 2017, 40(6): 22-27.

    Mu Chenbo. Analysis of the Influence of South-to-North Water Transfer on Land Subsidence in Beijing[J]. Journal of Hebei GEO University, 2017, 40(6): 22-27.
    [3]
    徐华山, 赵磊, 孙昊苏, 等. 南水北调中线北京段水质状况分析[J]. 环境科学, 2017, 38(4): 1357-1365.

    Xu Huashan, Zhao Lei, Sun Haosu, et al. Water Quality Analysis of Beijing Segment of South-to-North Water Diversion Middle Route Project[J]. Environmental Science, 2017, 38(4): 1357-1365.
    [4]
    雷坤超, 罗勇, 陈蓓蓓, 等. 北京平原区地面沉降分布特征及影响因素[J]. 中国地质, 2016, 43(6): 2216-2228.

    Lei Kunchao, Luo Yong, Chen Beibei, et al. Distribution Characteristics and Influence Factors of Land Subsidence in Beijing Area[J]. Geology in China, 2016, 43(6): 2216-2228.
    [5]
    杨艳, 贾三满, 王海刚, 等. 北京规划新城地面沉降影响分析[J]. 城市规划, 2013, 37(11): 67-71.

    Yang Yan, Jia Sanman, Wang Haigang, et al. Analysis on Impact of Land Subsidence on Planned New Cities in Beijing[J]. City Planning Review, 2013, 37(11): 67-71.
    [6]
    贾三满, 王海刚, 罗勇, 等. 北京市地面沉降发展及对城市建设的影响[J]. 城市地质, 2006, 1(2): 13-18.

    Jia Sanman, Wang Haigang, Luo Yong, et al. Development of Land Subsidence in Beijing and Its Influence on Urban Construction[J]. Urban Geology, 2006, 1(2): 13-18.
    [7]
    姜媛, 田芳, 罗勇, 等. 北京地区基于不同地面沉降阈值的地下水位控制分析[J]. 中国地质灾害与防治学报, 2015, 26(1): 37-42.

    Jiang Yuan, Tian Fang, Luo Yong, et al. Groundwater Control Target Under Different Threshold of Land Subsidence in Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 37-42.
    [8]
    易立新,侯建伟,要根明.廊坊市地面沉降灾害与城市可持续发展对策[J].工程地质学报,2005,13(S1):30-33

    Yi Lixin,Hou Jianwei,Yao Genming.Land Subsidence Disaster and City Sustainable Development in Langfang [J].Journal of Engineering Geology,2005, 13(S1):30-33
    [9]
    Poland M, Bürgmann R, Dzurisin D, et al. Constraints on the Mechanism of Long-Term, Steady Subsidence at Medicine Lake Volcano, Northern California, from GPS, Leveling, and InSAR[J]. Journal of Volcanology and Geothermal Research, 2006, 150(1/2/3): 55-78.
    [10]
    李振洪, 刘经南, 许才军. InSAR数据处理中的误差分析[J]. 武汉大学学报(信息科学版), 2004, 29(1): 72-76.

    Li Zhenhong, Liu Jingnan, Xu Caijun. Error Analysis in InSAR Data Processing[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 72-76.
    [11]
    王艳, 廖明生, 李德仁, 等. 利用长时间序列相干目标获取地面沉降场[J]. 地球物理学报, 2007, 50(2): 598-604.

    Wang Yan, Liao Mingsheng, Li Deren, et al. Subsidence Velocity Retrieval from Long-Term Coherent Targets in Radar Interferometric Stacks[J]. Chinese Journal of Geophysics, 2007, 50(2): 598-604.
    [12]
    Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
    [13]
    Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
    [14]
    Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
    [15]
    廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014.

    Liao Mingsheng, Wang Teng. Time Series InSAR Technology and Its Application[M]. Beijing: Science Press, 2014.
    [16]
    周吕, 郭际明, 李昕, 等. 基于SBAS-InSAR的北京地区地表沉降监测与分析[J]. 大地测量与地球动力学, 2016, 36(9): 793-797.

    Zhou Lü, Guo Jiming, Li Xin, et al. Monitoring and Analyzing on Ground Settlement in Beijing Area Based on SBAS-InSAR[J]. Journal of Geodesy and Geodynamics, 2016, 36(9): 793-797.
    [17]
    李永生, 张景发, 李振洪, 等. 利用短基线集干涉测量时序分析方法监测北京市地面沉降[J]. 武汉大学学报(信息科学版), 2013, 38(11): 1374-1377.

    Li Yongsheng, Zhang Jingfa, Li Zhenhong, et al. Land Subsidence in Beijing City from InSAR Time Series Analysis with Small Baseline Subset[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1374-1377.
    [18]
    许强, 蒲川豪, 赵宽耀, 等. 延安新区地面沉降时空演化特征时序InSAR监测与分析[J]. 武汉大学学报(信息科学版), 2021, 46(7): 957-969.

    Xu Qiang, Pu Chuanhao, Zhao Kuanyao, et al. Time Series InSAR Monitoring and Analysis of Spatiotemporal Evolution Characteristics of Land Subsidence in Yan’an New District[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 957-969.
    [19]
    周旭, 许才军, 温扬茂. 利用时序InSAR技术分析北京及河北廊坊地面沉降[J]. 测绘科学, 2017, 42(7): 89-93.

    Zhou Xu,Xu Caijun,Wen Yangmao. Land Subsidence Monitoring of Beijing and Langfang of Hebei Province by Time Series InSAR[J]. Science of Surveying and Mapping, 2017, 42(7): 89-93.
    [20]
    王艳, 葛大庆, 张玲, 等. 升降轨PSInSAR地面沉降监测结果的互检验与时序融合[J]. 国土资源遥感, 2014, 26(4): 125-130.

    Wang Yan,Ge Daqing,Zhang Ling, et al. Inter-comparison and Time Series Fusion of Ascending and Descending PSInSAR Data for Land Subsidence Monitoring[J]. Remote Sensing for Land & Resources, 2014, 26(4): 125-130.
    [21]
    赵昂, 杨元喜, 许扬胤, 等. 一种使用抗差估计的保护水平重构方法[J]. 武汉大学学报(信息科学版), 2021, 46(1): 96-102.

    Zhao Ang, Yang Yuanxi, Xu Yangyin, et al. A Method of Protection Level Reconstruction Based on Robust Estimation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 96-102.
    [22]
    肖雁峰. DEM质量检查与精度评定研究[D]. 成都: 西南交通大学, 2008.

    Xiao Yanfeng. Quality Inspection and Accuracy Evaluation for DEM[D].Chengdu: Southwest Jiaotong University, 2008.
    [23]
    Yang Y. Robust Estimation of Geodetic Datum Transformation[J]. Journal of Geodesy, 1999, 73(5): 268-274.
    [24]
    戴可人, 卓冠晨, 许强, 等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1778-1786.

    Dai Keren, Zhuo Guanchen, Xu Qiang, et al. Tracing the Pre-failure Two-Dimensional Surface Displacements of Nanyu Landslide, Gansu Province with Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1778-1786.
  • Related Articles

    [1]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [2]XU Yaming, SUN Fuyu, ZHANG Peng, WANG Jinling. A Pseudolite Positioning Approach Utilizing Carrier Phase Difference[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1445-1450. DOI: 10.13203/j.whugis20170033
    [3]ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045
    [4]ZHANG Tisheng, ZHENG Jiansheng, ZHANG Hongping, YAN Kunlun. Oscillator Effects on Carrier-Phase Measurements in GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1413-1416.
    [5]LIU Ning, XIONG Yongliang, XU Shaoguang. Detection and Repair of Cycle Slips Using Improved TurboEdit Algorithm and Chebyshev Polynomial Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1500-1503.
    [6]WENG Yongzhi, WU Jie. Time-differenced Carrier Phase/SINS Tight Integration Algorithm in the High-precision Navigation for High Earth Orbit Spacecraft[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1195-1199.
    [7]WU Jizhong, SHI Chuang, FANG Rongxin. Improving the Single Station Data Cycle Slip Detection Approach TurboEdit[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 29-33.
    [8]WANG Aisheng, OU Jikun. Detecting and Repairing Cycle Slips in GPS Single Frequency Carrier Phase Using Lowpass[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1079-1081.
    [9]WANG Fuhong, LIU Jiyu. A New Algorithm Detecting Cycle Slips in Satellite-Borne GPS Carrier Phase Measurements for Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 772-774.
    [10]Han Shaowei. Equivalence of the Methods for GPS Data Processing with Carrier Phase Observations[J]. Geomatics and Information Science of Wuhan University, 1991, 16(1): 68-77.
  • Cited by

    Periodical cited type(12)

    1. 董可,冯威,董兴干,黄丁发. 高频GNSS数据MGF周跳解算方法的质量控制. 武汉大学学报(信息科学版). 2023(02): 268-276 .
    2. 姜毅,石绍杰. 基于载噪比加权的BDS周跳探测方法研究. 大地测量与地球动力学. 2023(06): 575-580 .
    3. 范晓曼,黄劲松. 一种基于卡尔曼滤波的RTK定位周跳探测方法. 测绘地理信息. 2023(04): 65-69 .
    4. 朱云鹏,周松光. 一种GPS的双频周跳探测算法. 河南科技. 2022(03): 10-13 .
    5. 吕震,王振杰,单瑞,刘金萍. Galileo四频数据周跳探测与修复方法. 导航定位学报. 2022(03): 69-77 .
    6. 韩子彬,白燕,张峰,郭燕铭,卢晓春. 星地双向时差测量系统周跳探测与修复算法. 全球定位系统. 2022(03): 65-72 .
    7. 刘国超,谢小摧,周志远,曾令响. 双频载波相位求差法在BDS周跳探测与修复中的应用. 工程勘察. 2021(01): 54-57 .
    8. 蔡成林,沈文波,曾武陵,于洪刚,谢小平. 多普勒积分重构与STPIR联合周跳探测与修复. 测绘学报. 2021(02): 160-168 .
    9. 张晨晰,党亚民,薛树强,张龙平. 一种基于TurboEdit的BDS周跳探测改进方法. 测绘科学. 2021(06): 47-52+64 .
    10. 祝会忠,王煊,王楚扬,徐爱功,朱广彬. BDS中长距离基线高精度静态定位方法与实验. 测绘科学. 2020(03): 8-14 .
    11. 沈朋礼,成芳,肖厦,肖秋龙,卢晓春. 北斗三号卫星的周跳探测与修复算法. 测绘科学. 2019(11): 9-14+21 .
    12. 曲家庆,林加涛. 高精度双频卫星导航接收机相对定位方法. 制导与引信. 2018(02): 46-49 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return