Citation: | ZHOU Dongxu, FENG Yikai, ZHANG Huayi, FU Yanguang, TANG Qiuhua. Analysis of Relative Sea Level Change of Tianjin Coast in Recent 25 Years Using Satellite Altimetry and GNSS Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 775-784. DOI: 10.13203/j.whugis20210532 |
In recent 40 years, the risk of sea level rise in China’s coastal areas is further increased with the acceleration of sea level rise, especially in serious land subsidence areas (e.g., Tianjin, Shanghai). However, it is difficult to know the real relative sea level (RSL) change at Tianjin coast due to time frame and subsidence correction of the public tidal data. To solve this issue, we propose an analysis method of RSL change by using the data of satellite altimetry and global navigation satellite system (GNSS).
The method is executed based on the idea of the collocating observation of GNSS and tide gauge. Meanwhile, to obtain RSL in different areas of Tianjin coast, we simulate 4 GNSS and tide gauge co-stations. First, the absolute sea level change and vertical land motion of tide gauge stations are determined by using the data of satellite altimetry and co-located GNSS observations, respectively. Then, the relative sea level rise of Tanggu and four virtual tide gauge stations is calculated. Finally, the feasibility of our method is discussed based on multi-year leveling data.
The results show that the RSL rate was 13.45±0.45 mm/a at Tanggu tide station in the past 25 years, the RSL rate of four fictitious stations varied from 11.15±0.44 mm/a to 19.17±0.45 mm/a, and the mean rate along Tianjin coast was 15.09±0.45 mm/a. Vertical land motion and its non-uniform distribution were the main influencing factors of the RSL rise and its regional differences, with the contribution rate more than 70%.
Our research provides a new and feasible method for analyzing the RSL rise of Tianjin coast, however, it is still necessary to encrypt the tide observation facilities along the coast and retain and release the original tidal data, which can better serve the monitoring and research of sea level in Tianjin coastal area.
[1] |
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Geneva: IPCC, 2014.
|
[2] |
Trisirisatayawong I, Naeije M, Simons W, et al. Sea Level Change in the Gulf of Thailand from GPS-corrected Tide Gauge Data and Multi-satellite Altimetry [J]. Global and Planetary Change, 2011, 76(3-4): 137-151.
|
[3] |
Raucoules D, Le Cozannet G, Wöppelmann G, et al. High Nonlinear Urban Ground Motion in Manila (Philippines) from 1993 to 2010 Observed by DInSAR: Implications for Sea-level Measurement [J]. Remote Sensing of Environment, 2013, 139(2013): 386-397.
|
[4] |
周东旭, 周兴华, 雷宁等. 南海周边相对海平面变化特征及2004年苏门答腊地震影响分析[J]. 海洋学报, 2016, 38(1): 49-59.
Zhou Dongxu, Zhou Xinghua, Lei Ning, et al. Studying the Characteristics of Relative Sea Level Change in Surrounding South China Sea and the Impact of 2004 Sumatra Earthquake [J]. Haiyang Xuebao, 2016, 38(1): 49-59.
|
[5] |
王家兵. 天津深层地下水资源持续利用研究:控制地面沉降条件下[D]. 北京:中国地质大学(北京), 2006.
Wang Jiabing. Sustainable Development of the Deep Ground-water Resource Under the Condition of Controlling Land Subsidence in Tianjin [D]. Beijing:China University of Geosciences(Beijing), 2006.
|
[6] |
董克刚, 王威, 于强,等. 天津市地面沉降防治历史的调查研究及启示[J]. 中国地质灾害与防治学报, 2008, 19(3): 54-59.
Dong Kegang, Wang Wei, Yu Qiang, et al. History and Enlightenment of Land Subsidence Controlling in Tianjin City [J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(3): 54-59.
|
[7] |
郭良迁, 薄万举, 陈宇坤,等. 天津地区的垂直形变与构造活动研究[J]. 大地测量与地球动力学, 2009, 29(5): 1-5.
Guo Liangqian, Wanju Buo, Chen Yukun, et al. Vertical Deformation and Tectonic Activity in Tianjin Area [J]. Journal of Geodesy and Geodynamics, 2009, 29(5): 1-5.
|
[8] |
段晓峰, 许学工, 王若柏. 天津沿海地区地面沉降及其影响因素[J]. 北京大学学报(自然科学版), 2014, 50(6): 1071-1076.
Duan Xiaofeng, Xu Xuegong, Wang Ruobai. Land Subsidence and Its Influencing Factors in Tianjin Coastal Area [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1071-1076.
|
[9] |
自然资源部.中国海平面公报:2003—2019[OL]. https://www.nmdis.org.cn/hygb/zghpmgb/.
Ministry of Natural Resources of the People’s Republic of China.China Sea Level Bulletin:2003—2019[OL]. https://www.nmdis.org.cn/hygb/zghpmgb/.
|
[10] |
黄立人, 胡惠民, 杨国华. 渤海西、南岸的海面变化及邻近地区的现代地壳垂直运动[J]. 地壳形变与地震, 1991, 11(1): 1-9.
Huang Liren, Hu Huimin, Yang Guohua. Sea Level Change Along the Western and Southern Coast of Bohai Sea and Recent Crustal Vertical Movement in Adjacent Area [J]. Crustal Deformation and Earthquake, 1991, 11(1): 1-9.
|
[11] |
金涛勇,刘文轩,姜卫平,等. 卫星测高确定全球海平面变化研究进展[J]. 测绘地理信息, 2022, 47(3): 1-8.
Jin Taoyong, Liu Wenxuan, Jiang Weiping, et al.Research Progress on Global Sea Level Change Determined by Satellite Altimetry[J]. Journal of Geomatics, 2022, 47(3): 1-8.
|
[12] |
吴中鼎, 李占桥, 赵明才. 中国近海近50年海平面变化速度及预测[J]. 海洋测绘, 2003, 23(2): 17-19.
Wu Zhongding, Li Zhanqiao, Zhao Mingcai. The Process and Prediction of Sea Level Change of China Offshore Waters in 50 Years [J]. Hydroaphic Surveying and Charting, 2003, 23(2): 17-19.
|
[13] |
刘首华, 陈长霖, 刘克修,等. 渤黄海周边验潮站地面垂直运动速率计算[J]. 中国科学: 地球科学, 2015, 45(11): 1737-1746.
Liu Shouhua, Chen Changlin, Liu Kexiu, et al. Vertical Motions of Tide Gauge Stations Near the Bohai Sea and Yellow Sea [J]. Science China: Earth Sciences, 2015, 45(11): 1737-1746 .
|
[14] |
任美锷. 黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测[J]. 地理学报, 1993, 48(5): 385-393.
Ren Mei’e. Relative Sea Level Rise in Huanghe, Changjiang and Zhujiang (Yellow, Yangtze and Pearl River) Delta Over the Last 30 Years and Predication for the Next 40 Years (2030) [J]. Acta Geographica Sinica, 1993, 48(5): 385-393.
|
[15] |
胡俊杰, 蒙爱军. 天津地区的相对海平面上升与地面沉降[J]. 海洋信息, 2005(2): 17-19.
Hu Junjie, Meng Aijun. Relative Sea Level Rise and Land Subsidence in Tianjin Area [J]. Marine Information, 2005(2):17-19.
|
[16] |
杨曦, 王中良. 天津地区相对海平面变化最新进展及发展趋势分析[J]. 地球与环境, 2014, 42(2): 157-161.
Yang Xi, Wang Zhongliang. Analysis of the Latest Development and Tendency of Relative Sea-level Change in Tianjin, China [J]. Earth and Environment, 2014, 42(2): 157-161.
|
[17] |
Feng G, Jin S, Zhang T. Coastal Sea Level Changes in Europe from GPS, Tide Gauge, Satellite Altimetry and GRACE, 1993—2011 [J]. Advances in Space Research, 2013, 51(6): 1019-1028.
|
[18] |
Wöppelmann G, Marcos M. Vertical Land Motion as a Key to Understanding Sea Level Change and Variability [J]. Reviews of Geophysics, 2016, 54(1): 64-92.
|
[19] |
Kleinherenbrink M, Riva R, Frederikse T. A Comparison of Methods to Estimate Vertical Land Motion Trends from GNSS and Altimetry at Tide Gauge Stations [J]. Ocean Science, 2018, 14(2): 187-204.
|
[20] |
崔树红, 谢志仁, 钟鹤翔,等. 利用T/P海面高度数据校验验潮站地面升降的初步研究[J]. 地球科学进展, 2005, 20(6): 643-648.
Cui Shuhong, Xie Zhiren, Zhong Hexiang, et al. The Primary Researches That T/P Sea Height Data is Used Revised Ground Rise or Fall at the Tide Gauge Station [J]. Advances in Earth Science, 2005, 20(6): 643-648.
|
[21] |
占伟. 基于GPS连续观测的中国大陆典型区域地壳垂直运动研究[D]. 武汉:武汉大学, 2017.
Zhan Wei. Study on Vertical Crustal Motion in Chinese Mainland and Typical Areas Based on Continuous GPS [D]. Wuhan:Wuhan University, 2017.
|
[22] |
Bevis M, Brown A. Trajectory Models and Reference Frames for Crustal Motion Geodesy [J]. Journal of Geodesy, 2014, 88(3): 283-311.
|
[23] |
姜卫平, 王锴华, 李昭,等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2112-2123.
Jiang Weiping, Wang Kaihua, Li Zhao, et al. Prospect and Theory of GNSS Coordinate Time Series Analysis [J]. Geomatics and Information Science of Wuhan University,2018, 43(12): 2112-2123.
|
[24] |
符养. 中国大陆现今地壳形变与GPS坐标时间序列分析[D]. 上海:中国科学院上海天文台, 2002.
Fu Yang. Present-Day Crustal Deformation in China and GPS-Derived Coordinate Time Series Analysis [D]. Shanghai:Shanghai Astronomical Observatory,Chinese Academy of Sciences, 2002.
|
[25] |
张鹏, 蒋志浩, 秘金钟,等. 我国GPS跟踪站数据处理与时间序列特征分析[J]. 武汉大学学报(信息科学版), 2007, 32(3): 251-254.
Zhang Peng, Jiang Zhihao, Bei Jinzhong, et al. Data Processing and Time Series Analysis for GPS Fiducial Stations in China [J]. Geomatics and Information Science of Wuhan University, 2007, 32(3): 251-254.
|
[26] |
周东旭, 周兴华, 张化疑,等. 利用GPS连续观测进行中国沿海验潮站地壳垂直形变分析[J]. 武汉大学学报(信息科学版), 2016, 41(4): 516-522.
Zhou Dongxu, Zhou Xinghua, Zhang Huayi, et al. Analysis of the Vertical Deformation of China Coastal Tide Stations Based on GPS Continuous Observations [J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 516-522.
|
[27] |
Pfeffer J, Allemand P. The Key Role of Vertical Land Motions in Coastal Sea Level Variations: A Global Synthesis of Multi-satellite Altimetry, Tide Gauge Data and GPS Measurements [J]. Earth and Planetary Science Letters, 2016, 439(2016): 39-47.
|
[28] |
Woodworth P L. A Note on the Nodal Tide in Sea Level Records [J]. Journal of Coastal Research, 2012, 28(2): 316-323.
|
[29] |
黄祖珂, 黄磊. 潮汐原理与计算[M]. 青岛:中国海洋大学出版社, 2005:225-226.
Huang Zuke, Huang Lei. Tidal Theory and Calculation [M]. Qingdao:China Ocean University Press, 2005:225-226.
|
[30] |
Wöppelmann G, Marcos M. Coastal Sea Level Rise in Southern Europe and the Nonclimate Contribution of Vertical Land Motion [J]. Journal of Geophysical Research: Oceans, 2012, 117(1): 1-14.
|
[31] |
胡建国. 利用高精度GPS定位技术建立我国陆海垂直运动监测网[J]. 测绘学报, 1999, 28(4): 283-289.
Hu Jianguo. Use High Precision GPS Technique to Establish the Monitoring Network for Vertical Continent-ocean Movement in Our Country [J]. Acta Geodaetica et Cartogarphica Sinica, 1999, 28(4): 283-289.
|
[32] |
焦文海, 魏子卿,郭海荣,等. 联合GPS基准站和验潮站数据确定海平面绝对变化[J]. 武汉大学学报(信息科学版), 2004, 29(10): 901-904.
Jiao Wenhai, Wei Ziqing, Guo Hairong,et al. Determination of the Absolute Rate of Sea Level by Using GPS Reference Station and Tide Gauge Data [J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 901-904.
|
[33] |
刘根友,朱耀仲,徐厚泽,等.GPS监测中国沿海验潮站垂直运动观测研究[J]. 武汉大学学报(信息科学版), 2005, 30(12): 1044-1047.
Liu Genyou, Zhu Yaozhong, Xu Houze,et al. Study on Height Changes of Chinese Tide Gauges by GPS [J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1044-1047.
|
[34] |
Peltier W R. Chapter 4 Global Glacial Isostatic Adjustment and Modern Instrumental Records of Relative Sea Level History[J]. International Geophysics Series, 2001,75:65-95.
|
[35] |
Peltier W R, Argus D F, Drummond R. Comment on “An Assessment of the ICE-6G_C(VM5a) Glacial Isostatic Adjustment Model” by Purcellet al.[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 2019-2028.
|
[36] |
Tamisiea M E, Mitrovica J X. The Moving Boundaries of Sea Level Change: Understanding the Origins of Geographic Variability [J]. Oceanography, 2011, 24(2): 24-39.
|
[37] |
中华人民共和国自然资源部. 全球导航卫星系统(GNSS)连续运行基准站与验潮站并置建设规范: HY/T 243-2018[S]. 北京: 中国标准出版社, 2018.
Ministry of Natural Resources. Specifications for Construction of Co-located GNSS Continuous Reference Station and Tide Gauge Station: HY/T 243-2018 [S]. Beijing: China Standard Press, 2018.
|
[38] |
Collilieux X, Wöppelmann G. Global Sea-level Rise and Its Relation to the Terrestrial Reference Frame [J]. Journal of Geodesy, 2011, 85(1): 9-22.
|
[39] |
Santamaría-Gómez A, Gravelle M, Wöppelmann G. Long-term Vertical Land Motion from Double-Differenced Tide Gauge and Satellite Altimetry Data [J]. Journal of Geodesy, 2014, 88(3): 207-222.
|
[40] |
Santamaría-Gómez A, Gravelle M, Dangendorf S, et al. Uncertainty of the 20th Century Sea-Level Rise Due to Vertical Land Motion Errors [J]. Earth and Planetary Science Letters, 2017, 473(2017): 24-32.
|
[41] |
Snay R, Cline M, Dillinger W, et al. Using Global Positioning System-Derived Crustal Velocities to Estimate Rates of Absolute Sea Level Change from North American Tide Gauge Records [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4): 1-11.
|
[42] |
Tretyak K, Dosyn S. Study of Vertical Movements of the European Crust Using Tide Gauge and GNSS Observations [J]. Reports on Geodesy and Geoinformatics, 2014, 97(1): 112-131.
|
[43] |
Wöppelmann G, Letretel C, Santamaría A, et al. Rates of Sea Level Change Over the Past Century in a Geocentric Reference Frame [J]. Geophysical Research Letters, 2009, 36(12): L12607:1- L12607:6.
|
[44] |
王若柏, 周伟, 李凤林,等. 天津地区构造沉降及控沉远景问题[J]. 水文地质工程地质, 2003, 30(5): 12-17.
Wang Ruobai, Zhou Wei, Li Fenglin, et al. Tectonic Subsidence and Prospect of Ground Subsidence Control in Tianjin Area [J]. Hydrogeology & Engineering Geology, 2003, 30(5): 12-17.
|
[45] |
易长荣. 天津市控制地面沉降工作最新进展[J]. 海河水利, 2017, 42(3): 42-43,66.
Yi Changrong. The Latest Progress of Land Subsidence Control in Tianjin [J]. Haihe Water Resources, 2017, 42(3): 42-43,66.
|
[1] | IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287 |
[2] | XU Yaming, SUN Fuyu, ZHANG Peng, WANG Jinling. A Pseudolite Positioning Approach Utilizing Carrier Phase Difference[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1445-1450. DOI: 10.13203/j.whugis20170033 |
[3] | ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045 |
[4] | ZHANG Tisheng, ZHENG Jiansheng, ZHANG Hongping, YAN Kunlun. Oscillator Effects on Carrier-Phase Measurements in GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1413-1416. |
[5] | LIU Ning, XIONG Yongliang, XU Shaoguang. Detection and Repair of Cycle Slips Using Improved TurboEdit Algorithm and Chebyshev Polynomial Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1500-1503. |
[6] | WENG Yongzhi, WU Jie. Time-differenced Carrier Phase/SINS Tight Integration Algorithm in the High-precision Navigation for High Earth Orbit Spacecraft[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1195-1199. |
[7] | WU Jizhong, SHI Chuang, FANG Rongxin. Improving the Single Station Data Cycle Slip Detection Approach TurboEdit[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 29-33. |
[8] | WANG Aisheng, OU Jikun. Detecting and Repairing Cycle Slips in GPS Single Frequency Carrier Phase Using Lowpass[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1079-1081. |
[9] | WANG Fuhong, LIU Jiyu. A New Algorithm Detecting Cycle Slips in Satellite-Borne GPS Carrier Phase Measurements for Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 772-774. |
[10] | Han Shaowei. Equivalence of the Methods for GPS Data Processing with Carrier Phase Observations[J]. Geomatics and Information Science of Wuhan University, 1991, 16(1): 68-77. |