Citation: | LIN Anqi, WU Hao, HAN Lei, CEN Luyu. Social Media Information Extraction and Public Opinion Mining for African Swine Fever Epidemic[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1800-1812. DOI: 10.13203/j.whugis20210406 |
The studies on the spread of major animal diseases and its evolution of public opinion are of great significance to the improvement of epidemic prevention and public opinion guidance. With the development of Web 2.0 technology and the popularity of smart phones, various forms of social media platforms become important channels for obtaining, sharing and discussing hot topics. A large number of texts with geographical location information are generated, which have provided a new way for the research of animal epidemic and other emergencies.
Taking Sina microblog data during African swine fever(ASF) spread in our country from 2018 to 2019 as the case study, the objective of this work is to establish the spread spatiotemporal characteristics analysis and public opinion mining model. First, the Mann-Kendall mutation detection method is introduced to objectively divide the epidemic transmission cycle and investigate the spatial distribution characteristics of different stages. Then, the latent Dirichlet allocation theme clustering model is used to describe the evolution of public opinion topics among different ASF epidemic stages. Finally, the primary factors influencing public opinion attention are explored based on the geographical detector method.
The results show that the spread of ASF in China showed a trend of spreading from northeast to southwest, and experienced four stages: Incubation, outbreak, fluctuation and recession.
At each stage, public opinion around outbreak itself and the specific theme is derived, and with the development of epidemic derivative subject is more abundant, popular sentiment also from at each stage. Public opinion around outbreak itself and the specific derivative topics, and derivative topics become more abundant with the development of epidemic, public sentiment also gradually changes from negative to positive. Regional awareness of ASF is strongly influenced by pork consumption and production, rather than by local education and urbanization levels.
[1] |
陈腾, 张守峰, 周鑫韬, 等. 中国首次非洲猪瘟疫情的发现和流行分析[J]. 中国兽医学报, 2018, 38(9):1831-1832.
Chen Teng, Zhang Shoufeng, Zhou Xintao, et al. Discovery and Epidemic Analysis of the First African Swine Fever Epidemic in China[J]. Chinese Journal of Veterinary Science, 2018, 38(9):1831-1832.
|
[2] |
Cheng L.Exploration of Retail Development Model of Feed Enterprises Under African Swine Fever [C]//International Conference on Economics,Business and Management Innovation,Osaka,Japan,2020.
|
[3] |
王凯, 范志新, 田昊伦, 等. 非洲猪瘟的流行概况及防控策略[J]. 中国兽医学报, 2019, 39(5): 1027-1034
Wang Kai, Fan Zhixin, Tian Haolun, et al. Epidemic Situation and Prevention and Control Strategy of African Swine Fever[J]. Chinese Journal of Vete‑rinary Science, 2019, 39(5):1027-1034.
|
[4] |
王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J].武汉大学学报(信息科学版),2016,41(3): 290-297.
Wang Yandong, Li Hao, WangTeng, et al. The Mining and Analysis of Emergency Information in Sudden Events Based on Social Media[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 290-297.
|
[5] |
Goodchild M F. Citizens as Sensors: The World of Volunteered Geography[J]. GeoJournal, 2007, 69(4): 211-221.
|
[6] |
Imran M, Castillo C, Diaz F, et al. Processing Social Media Messages in Mass Emergency: Survey Summary [C]//Companion of the the Web Conferen‑ce, Lyon, France, 2018.
|
[7] |
邬柯杰, 吴吉东, 叶梦琪. 社交媒体数据在自然灾害应急管理中的应用研究综述 [J]. 地理科学进展, 2020, 39(8): 1412-1422.
Wu Kejie, Wu Jidong, Ye Mengqi. A Review on the Application of Social Media Datain Natural Disaster Emergency Management[J].Progress in Geography, 2020, 39(8): 1412-1422.
|
[8] |
刘涛, 张晓辉, 杜萍, 等. 文本大数据中地震应急的知识发现方法[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1205-1213.
Liu Tao,Zhang Xiaohui,Du Ping, et al. Knowledge Discovery Method from Text Big Data for Earthquake Emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1205-1213.
|
[9] |
杨腾飞, 解吉波, 李振宇, 等. 微博中蕴含台风灾害损失信息识别和分类方法 [J]. 地球信息科学学报, 2018, 20(7): 906-917.
Yang Tengfei,Xie Jibo, Li Zhenyu, et al.A Method of Typhoon Disaster Loss Identification and Classification Using Micro-blog Information[J]. Journal of Geo-information Science, 2018, 20(7): 906-917.
|
[10] |
Signorini A, Segre A, Polgreen P. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. During the Influenza a H1N1 Pandemic [J].PLOS ONE,2011,6(5): e19467.
|
[11] |
Yang J, Yu M, Qin H, et al. A Twitter Data Credibility Framework: Hurricane Harvey as a Use Case [J]. ISPRS International Journal of Geo-Information, 2019, 8(3): 111.
|
[12] |
陈佳珊, 黄景浩, 杨坦, 等. 新冠疫情新闻中关键信息的自动提取[J]. 数学建模及其应用, 2020, 9(4): 94-100.
Chen Jiashan, Huang Jinghao, Yang Tan, et al. Information Extraction System of COVID-19 News[J]. Mathematical Modeling and Its Applications, 2020, 9(4): 94-100.
|
[13] |
赵飞, 廖永丰. 突发自然灾害事件网络舆情传播特征及影响因素研究 [J]. 地球信息科学学报, 2021, 23(6): 992-1001.
Zhao Fei, Liao Yongfeng. Research on the Dissemination Characteristics and Influencing Factors of Network Public Opinion of Sudden Natural Disaster Events[J]. Journal of Geo-information Science, 2021,23(6): 992-1001.
|
[14] |
王艳东, 付小康, 李萌萌. 一种基于共词网络的社交媒体数据主题挖掘方法[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2287-2294.
Wang Yandong, Fu Xiaokang, Li Mengmeng. A New Social Media Topic Mining Method Based on Co-word Network [J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2287-2294.
|
[15] |
王卷乐, 张敏, 韩雪华, 等. COVID-19疫情防控中的中国公众舆情时空演变特征 [J]. 地理学报, 2020, 75(11): 2490-2504.
Wang Juanle, Zhang Min, Han Xuehua, et al. Spatio-Temporal Evolution and Regional Differences of the Public Opinion on the Prevention and Control of COVID-19 Epidemic in China[J]. Acta Geographica Sinica, 2020, 75(11): 2490-2504.
|
[16] |
陈兴蜀, 常天祐, 王海舟, 等. 基于微博数据的“新冠肺炎疫情”舆情演化时空分析 [J]. 四川大学学报(自然科学版), 2020, 57(2): 409-416.
Chen Xingshu, Chang Tianyou, Wang Haizhou, et al. Spatial and Temporal Analysis on Public Opinion Evolution of Epidemic Situation About Novel Coronavirus Pneumonia Based on Micro-blog Data[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(2): 409-416.
|
[17] |
王敬泉, 王凯. 基于GIS的突发事件网络舆情传播可视化探究[J]. 测绘通报, 2019(12): 142-146.
Wang Jingquan, Wang Kai.Research on the Visualization of Network Public Opinion of Emergence Spreading on GIS[J]. Bulletin of Surveying and Mapping, 2019(12): 142-146.
|
[18] |
周勋章, 李广东, 孟宪华, 等. 非洲猪瘟背景下养猪户决策行为及其影响因素 [J]. 农业工程学报, 2020, 36(8): 316-324.
Zhou Xunzhang, Li Gungdong, Meng Xianhua, et al. Decision-Making Behaviors and Influence Factors of Pig Farmers at Different Scales Against African Swine Fever[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(8): 316-324.
|
[19] |
Zhang H P, Shang J Y. NLPIR-Parser: An Intelligent Semantic Analysis Toolkit for Big Data [J]. Corpus Linguistics, 2019, 6(1): 87-104.
|
[20] |
谢永俊, 彭霞, 黄舟, 等. 基于微博数据的北京市热点区域意象感知[J]. 地理科学进展, 2017, 36(9): 1099-1110.
Xie Yongjun, Peng Xia, Huang Zhou, et al. Image Perception of Beijing’s Regional Hotspots Based on Microblog Data[J]. Progress in Geography, 2017, 36(9): 1099-1110.
|
[21] |
Mann H B. Nonparmetric Tests Against Trend [J]. Econometrica, 1945, 13(3): 245-259.
|
[22] |
Kendall M G. Rank Correlation Methods [M]. London: Griffin, 1975.
|
[23] |
Blei D, Ng A, Jordan M. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
|
[24] |
Jacobi C, van A W, Welbers K. Quantitative Analysis of Large Amounts of Journalistic Texts Using Topic Modelling[J]. Digital Journalism, 2016, 4(1): 89-106.
|
[25] |
Jelodar H, Wang Y, Yuan C, et al. Latent Dirichlet Allocation (LDA) and Topic Modeling: Models, Applications, a Survey[J]. Multimedia Tools and Applications, 2019, 78(11): 15169-15211.
|
[26] |
Nielsen F. On the Jensen-Shannon Symmetrization of Distances Relying on Abstract Means[J].Entropy, 2019, 21: 485.
|
[27] |
王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1): 116-134.
Wang Jinfeng, Xu Chengdong. Geodetector: Principle and Prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
|
[28] |
胡碧松, 龚建华, 周洁萍, 等. 疾病传播输入输出流的时空特征分析:以北京SARS流行为例[J]. 中国科学:地球科学, 2013, 43(9): 1499-1517.
Hu Bisong, Gong Jianhua, Zhou Jieping, et al. Spatial-Temporal Characteristics of Epidemic Spread In-out Flow: Using SARS Epidemic in Beijing as a Case Study[J].Science China:Earth Sciences, 2013, 43(9): 1499-1517.
|
[1] | WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038 |
[2] | ZHENG Nanshan, FENG Qiulin, LIU Chen, ZHOU Xiaomin. Relationship Analysis Between GPS Reflection Signal SNR and NDVI[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1423-1429. DOI: 10.13203/j.whugis20180046 |
[3] | ZHANG Guofeng, YANG Lirong. Assessing the Local Uncertainty of Precipitation with Copulas[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 805-809. DOI: 10.13203/j.whugis20130497 |
[4] | GAN Wenxia, SHEN Huanfeng, ZHANG Liangpei, GONG Wei. Normalization of Multi-temporal MODIS NDVI Based on6SRadiative Transfer Model[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 300-304. DOI: 10.13203/j.whugis20120731 |
[5] | HAN Ping, WANG Pengxin, ZHANG Shuyu, ZHU Dehai. Drought Forecasting with Vegetation Temperature Condition Index[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1202-1206. |
[6] | LIU Liangming, XIANG Daxiang, WEN Xiongfei, YANG Na. Improvement of Cloud Parameters Based Drought Monitoring Model Using Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 207-209. |
[7] | SUN Jianguo, AI Tinghua, WANG Pei, ZHAO Chuanyan. Assessing Vegetation Degradation Based on NDVI-climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576. |
[8] | WANG Zhengxing, LIU Chuang, CHEN Wenbo, LIN Xin. Preliminary Comparison of MODIS-NDVI and MODIS-EVI in Eastern Asia[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 407-410. |
[9] | LIU Liangming, LIANG Yitong, MA Huiyun, HUANG Jing. Relationship Research Between MODIS-NDVI and AVHRR-NDVI[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 307-310. |
[10] | WANG Pengxin, GONG Jianya, LI Xiaowen. Vegetation-Temperature Condition Index and Its Application for Drought Monitoring[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 412-418. |