TANG Yulin, BIAN Shaofeng, ZHAI Guojun, LIU Min, ZHANG Weidong. An Improved YOLOv5 Method for Shipwreck Target Detection by Side-Scan Sonar Images[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 977-985. DOI: 10.13203/j.whugis20210353
Citation: TANG Yulin, BIAN Shaofeng, ZHAI Guojun, LIU Min, ZHANG Weidong. An Improved YOLOv5 Method for Shipwreck Target Detection by Side-Scan Sonar Images[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 977-985. DOI: 10.13203/j.whugis20210353

An Improved YOLOv5 Method for Shipwreck Target Detection by Side-Scan Sonar Images

More Information
  • Received Date: August 31, 2022
  • Available Online: June 11, 2024
  • Objectives 

    The side-scan sonar shipwreck detection method based on the YOLOv3 model has the problems of high miss-alarm rate of small targets, heavy model weight, and slow detection speed that fails to meet real-time requirements.

    Methods 

    This paper introduces the YOLOv5 algorithm and proposes an improved YOLOv5 model according to the characteristics of the side-scan sonar shipwreck dateset. We test YOLOv5a, YOLOv5b, YOLOv5c, YOLOv5d, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x under the basic framework of YOLOv5 with eight different depth and width model structures. Then we choose the best structure by using genetic algorithm and K-means algorithm to optimize the detection frame, and to improve the loss function through complete intersection over union.

    Results 

    The results show that under the different range of intersection over union as 0.5 and 0.5-0.95,the average precisions of the improved YOLOv5a model are increased by about 0.3% and 0.6% than that of the original model,respectively. Compared with the YOLOv3 model, the average precisions of the improved YOLOv5a model are increased by 4.2% and 6.1%, respectively, and the detection speed reaches 426 frames per second which is almost doubled that of YOLOv3.

    Conclusions 

    The proposed method is more conducive to practical applications and engineering deployment.

  • [1]
    赵建虎, 李娟娟, 李萌. 海洋测量的进展及发展趋势[J]. 测绘信息与工程, 2009, 34(4): 25-27.

    Zhao Jianhu, Li Juanjuan, Li Meng. Progress and Future Trend of Hydrographic Surveying and Charting[J]. Journal of Geomatics, 2009, 34(4): 25-27.
    [2]
    王久, 曹敬涛, 卢秉武, 等. 水下目标探测项目设备应用和发展趋势[J]. 珠江水运, 2016(11): 43-44.

    Wang Jiu, Cao Jingtao, Lu Bingwu, et al. Underwater Target Detection Project Equipment Application and Development Trend[J]. Pearl River Water Transport, 2016(11): 43-44.
    [3]
    陈正荣, 王正虎. 多波束和侧扫声纳系统在海底目标探测中的应用[J]. 海洋测绘, 2013, 33(4): 51-54.

    Chen Zhengrong, Wang Zhenghu. Research on Underwater Target Detection Using Side-Scan Sonar and Multibeam Sounding System[J]. Hydrographic Surveying and Charting, 2013, 33(4): 51-54.
    [4]
    王久, 周健. 侧扫声呐和多波束系统在失事沉船扫测中的综合应用[J]. 中国水运, 2010, 10(8): 35-37.

    Wang Jiu, Zhou Jian. Comprehensive Application of Side-Scan Sonar and Multi-beam System in Shipwreck Survey[J]. China Water Transport, 2010, 10(8): 35-37.
    [5]
    刘陈. 多波束系统、侧扫声纳与磁力仪在海底沉船探测中的比较分析[D]. 北京: 中国地质大学(北京), 2015.

    Liu Chen. The Comparative Analysis of Multi-beam Sounding System, Side-Scan Sonar and Magnetometer in the Wreck Detection[D]. Beijing: China University of Geosciences, 2015.
    [6]
    赵建虎, 王晓, 张红梅. 侧扫声呐图像海底线自动提取方法研究[J]. 武汉大学学报(信息科学版), 2017, 42(12): 1797-1803.

    Zhao Jianhu, Wang Xiao, Zhang Hongmei. An Automatic Bottom Extracting Method for Side-Scan Sonar Image[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1797-1803.
    [7]
    阳凡林, 刘经南, 赵建虎. 基于数据融合的侧扫声呐图像预处理[J]. 武汉大学学报(信息科学版), 2004, 29(5): 402-406.

    Yang Fanlin, Liu Jingnan, Zhao Jianhu. Side-Scan Sonar Image Preprocessing Techniques Based on Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 402-406.
    [8]
    朱殿尧, 卞红雨. 侧扫声呐目标自动探测研究[J]. 吉林大学学报(信息科学版), 2008, 26(6): 627-631.

    Zhu Dianyao, Bian Hongyu. Research of Side-Scan Sonar Target Auto Detection[J]. Journal of Jilin University (Information Science Edition), 2008, 26(6): 627-631.
    [9]
    李海滨, 滕惠忠, 宋海英, 等. 基于侧扫声呐图像海底目标物提取方法[J]. 海洋测绘, 2010, 30(6): 71-73.

    Li Haibin, Teng Huizhong, Song Haiying, et al. Technology on the Extraction of Seabed Target Based on High Resolution Side-Scan Sonar[J]. Hydrographic Surveying and Charting, 2010, 30(6): 71-73.
    [10]
    王晓. 侧扫声呐图像精处理及目标识别方法研究[D]. 武汉: 武汉大学, 2017.

    Wang Xiao. Research on Precise Processing of Side Scan Sonar Image and Object Recognition Methods[D]. Wuhan: Wuhan University, 2017.
    [11]
    赵建虎, 王晓, 张红梅, 等. 侧扫声呐图像分割的中性集合与量子粒子群算法[J]. 测绘学报, 2016, 45(8): 935-942.

    Zhao Jianhu, Wang Xiao, Zhang Hongmei, et al. The Neutrosophic Set and Quantum-Behaved Particle Swarm Optimization Algorithm of SideScan Sonar Image Segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 935-942.
    [12]
    赵建虎, 王爱学, 王晓, 等. 侧扫声呐条带图像分段拼接方法研究[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1034-1038.

    Zhao Jianhu, Wang Aixue, Wang Xiao, et al. A Segmented Mosaic Method for Side Scan Sonar Strip Images Using Corresponding Features[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1034-1038.
    [13]
    阳凡林, 独知行, 吴自银, 等. 基于灰度直方图和几何特征的声呐图像目标识别[J]. 海洋通报, 2006, 25(5): 64-69.

    Yang Fanlin, Du Zhixing, Wu Ziyin, et al. Object Recognizing on Sonar Image Based on Histogram and Geometric Feature[J]. Marine Science Bulletin, 2006, 25(5): 64-69.
    [14]
    朱殿尧. 水声图像处理与模式识别[D]. 哈尔滨: 哈尔滨工程大学, 2008.

    Zhu Dianyao. Underwater Acoustic Image Processing and Pattern Recognition[D]. Harbin: Harbin Engineering University, 2008.
    [15]
    续元君. 水下目标探测关键技术研究[D]. 大连: 大连海事大学, 2011.

    Xu Yuanjun. Research on the Key Technologies of Detection Underwater[D]. Dalian: Dalian Maritime University, 2011.
    [16]
    陈强. 基于水声图像水下目标识别的技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    Chen Qiang. Research-based Underwater Acoustic Images Underwater Target Recognition[D]. Harbin: Harbin Engineering University, 2012.
    [17]
    Kamal S, Mohammed S K, Saseendran P, et al. Deep Learning Architectures for Underwater Target Recognition[C]//Ocean Electronics (SYMPOL), Kochi, India, 2013.
    [18]
    郭军, 马金凤, 王爱学. 基于SVM算法和GLCM的侧扫声呐影像分类研究[J]. 测绘与空间地理信息, 2015, 38(3): 60-63.

    Guo Jun, Ma Jinfeng, Wang Aixue. Study of Side Scan Sonar Image Classification Based on SVM and Gray Level Co-Occurrence Matrix[J]. Geomatics & Spatial Information Technology, 2015, 38(3): 60-63.
    [19]
    汤寓麟, 金绍华, 边刚, 等. 侧扫声呐识别沉船影像的迁移学习卷积神经网络法[J]. 测绘学报, 2021, 50(2): 260-269.

    Tang Yulin, Jin Shaohua, Bian Gang, et al. The Transfer Learning with Convolutional Neural Network Method of Side-Scan Sonar to Identify Wreck Images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 260-269.
    [20]
    Tang Y L, Jin S H, Bian G, et al. Wreckage Target Recognition in Side-Scan Sonar Images Based on an Improved Faster R-CNN Model[C]// International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 2020.
    [21]
    Tang Y L, Jin S H, Bian G, et al. Shipwreck Target Recognition in Side-Scan Sonar Images by Improved YOLOv3 Model Based on Transfer Learning[J]. IEEE Access, 2020, 8: 173450-173460.
  • Related Articles

    [1]WEI Erhu, LIU Xuexi, WANG Lingxuan, LIU Jingnan. Analysis and Assessment of BDS/GPS Combined Precise Point Positioning Accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1654-1660. DOI: 10.13203/j.whugis20160568
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]ZHANG Rui, YANG Yuanxi, ZHANG Qin, HUANG Guanwen, WANG Le, YAN Xingyuan, QU Wei. Contribution Analysis of BDS/GPS Combined Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 600-608. DOI: 10.13203/j.whugis20150081
    [4]SUI Xin, SHI Chuang, LI Min, XU Zongqiu, XU Aigong. Impact Analysis of GPS/BDS Combined Positioning on Ambiguity Search Region for Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1372-1378. DOI: 10.13203/j.whugis20150479
    [5]GAO Xiao, DAI Wujiao, LI Shijia. Interior Performance Test of High Precision GPS/BDS Compatible Receivers[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 795-799. DOI: 10.13203/j.whugis20130459
    [6]Dongmei, XU Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 621-624.
    [7]LI Yihe, SHEN Yunzhong. Impact of Temporal Correlation of GPS Observations on Baseline Solution[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 427-430.
    [8]XIONG Yongliang, HUANG Dingfa, XU Shaoguang, LIAO Hua. Long Distance Kinematic GPS Data Processing and Kinematic Crustal Deformation Features Analysis of Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 265-269.
    [9]ZENG Xuping. GPS Data Processing of Landslide Vertical Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 201-204.
    [10]JIANG Weiping, LIU Jingnan, YE Shirong. The Systematical Error Analysis of Baseline Processing in GPS Network[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 196-199,238.
  • Cited by

    Periodical cited type(8)

    1. 翟高鹏,李文彬,薛新春,何杰. 空间直角坐标分量中误差转换到相邻点基线分量中误差的算法设计与实现. 测绘与空间地理信息. 2024(02): 204-206+210 .
    2. 张亮亮,李亚泽,熊磊,杨鹏飞,闵恒良. “北斗云”——电力时空大数据云平台技术与应用研究. 西部资源. 2023(02): 189-192 .
    3. 伏明星,李仲勤,张瑞鹏. 宝兰高铁某标段CPI复测数据处理与稳定性分析. 测绘地理信息. 2021(06): 40-45 .
    4. 刘洋洋,党亚民,许长辉. 基于GAMIT对国家GNSS基准站进行的北斗基线解算分析. 测绘工程. 2019(03): 25-29 .
    5. 张波. 北斗卫星导航系统用于高精度工程控制网建立的可行性分析. 北京测绘. 2019(07): 792-796 .
    6. 白正伟,张勤,黄观文,景策,王家兴. “轻终端+行业云”的实时北斗滑坡监测技术. 测绘学报. 2019(11): 1424-1429 .
    7. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(07): 49-50 .
    8. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(14): 49-50 .

    Other cited types(1)

Catalog

    Article views (1841) PDF downloads (163) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return