WANG Yingzhe, TAO Xianlu, ZHU Feng, LIU Wanke, ZHANG Xiaohong, WU Mingkui. High Accuracy Differential Positioning with Smartphone GNSS Raw Measurements[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1941-1950. DOI: 10.13203/j.whugis20210280
Citation: WANG Yingzhe, TAO Xianlu, ZHU Feng, LIU Wanke, ZHANG Xiaohong, WU Mingkui. High Accuracy Differential Positioning with Smartphone GNSS Raw Measurements[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1941-1950. DOI: 10.13203/j.whugis20210280

High Accuracy Differential Positioning with Smartphone GNSS Raw Measurements

Funds: 

The National Key Research and Development Program of China 2016YFB0501803

Major Special Projects of Technological Innovation in Hubei Province 2019AAA043

the Major Project of China's Second-Generation Navigation Satellite System GFZX030302030202

the Wuhan Science and Technology Project 2020010601012185

Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University 19-01-06

More Information
  • Author Bio:

    WANG Yingzhe, postgraduate, majors in low-cost high precise GNSS navigation. E-mail: yzwang2019@whu.edu.cn

  • Corresponding author:

    ZHU Feng, PhD, associate researcher. E-mail: fzhu@whu.edu.cn

  • Received Date: May 31, 2021
  • Published Date: December 04, 2021
  •   Objectives  The demand for smartphones to provide stable high accuracy navigation and positioning service is increasing. However, limited by low-cost and low-power hardware of smartphones, there are high pseudo-range noise, serious multipath effects and frequent cycle slips, which lead to poor positioning performance.
      Methods  The paper supposes a velocity-constraint dual-frequency RTD(real time differential)/RTK(real time kinematic) automatic switching navigation model. Firstly, L5/E5a/B2 signals are more resistant to multipath effects and help to improve the positioning performance. Secondly, the multipath noise is smoothed effectively by using velocity-constraint filtering model. Finally, RTD/RTK automatic switching strategy improves the stability and accuracy of positioning, especially under urban environment where continuous carrier phase measurements are insufficient.
      Results and Conclusions  This paper assesses the positioning performance of the Huawei Mate40 and the results show that the fixed rates of static positioning and pedestrian positioning are 99.67% and 57.99% respectively. Horizontal positioning accuracy of the pedestrian test is about 0.5 m. The vehicle positioning results show that more than 70% epochs can reach lane-level accuracy, which shows that the method supposed in this paper can basically meet the smartphone users' needs of high accuracy navigation and positioning service under urban environment.
  • [1]
    [2]
    Yoon D, Kee C, Seo J, et al. Position Accuracy Im ‐ provement by Implementing the DGNSS-CP Algo‐ rithm in Smartphones[J]. Sensors, 2016, 16(6): 910 http://europepmc.org/articles/PMC4934336/
    [3]
    European GNSS Agency(GSA), European Space Agency(ESA), Nottingham Geospatial Institute, et al. Using GNSS Raw Measurements on Android De‐ vices[EB/OL]. https://www. gsa. europa. eu/system/ files/reports/gnss_raw_measurement _web_0. pdf,2017
    [4]
    Paziewski J, Sieradzki R, Baryla R. Signal Charac‐ terization and Assessment of Code GNSS Positioning with Low ‐ Power Consumption Smartphones[J]. GPS Solutions, 2019, 23(4): 1-12 doi: 10.1007/s10291-019-0892-5
    [5]
    刘万科, 史翔, 朱锋, 等. 谷歌Nexus 9智能终端原始GNSS观测值的质量分析[J]. 武汉大学学报·信息科学版, 2019, 44(12): 1 749-1 756 doi: 10.13203/j.whugis20180141

    Liu Wanke, Shi Xiang, Zhu Feng, et al. Quality Analysis of Raw GNSS Observation of Google Nexus 9 Smart Tablet Terminal[J]. Geomatics and Infor mation Science of Wuhan University, 2019, 44(12): 1 749-1 756 doi: 10.13203/j.whugis20180141
    [6]
    Li G C, Geng J H. Characteristics of Raw MultiGNSS Measurement Error from Google Android Smart Devices[J]. GPS Solutions, 2019, 23(3): 1-16
    [7]
    Geng J H, Jiang E M, Li G C, et al. An Improved Hatch Filter Algorithm Towards Sub-Meter Posi‐ tioning Using only Android Raw GNSS Measure‐ ments Without External Augmentation Corrections [J]. Remote Sensing, 2019, 11(14): 1 679 doi: 10.3390/rs11141679
    [8]
    Zhang X H, Tao X L, Zhu F, et al. Quality Assess‐ ment of GNSS Observations from an Android N Smartphone and Positioning Performance Analysis Using Time-Differenced Filtering Approach[J]. GPS Solutions, 2018, 22(3): 1-11
    [9]
    Guo L, Wang F H, Sang J Z, et al. Characteristics Analysis of Raw Multi-GNSS Measurement from Xiaomi Mi 8 and Positioning Performance Improve‐ ment with L5/E5 Frequency in an Urban Environ‐ ment[J]. Remote Sensing, 2020, 12(4): 744 doi: 10.3390/rs12040744
    [10]
    Liu W K, Shi X, Zhu F, et al. Quality Analysis of MultiGNSS Raw Observations and a Velocity-Aided Posi‐ tioning Approach Based on Smartphones[J]. Advanc es in Space Research, 2019, 63(8): 2 358-2 377 doi: 10.1016/j.asr.2019.01.004
    [11]
    郭磊, 王甫红, 桑吉章, 等. 一种新的利用历元间位置变化量约束的GNSS导航算法[J]. 武汉大学学报·信息科学版, 2020, 45(1): 21-27 doi: 10.13203/j.whugis20190062

    Guo Lei, Wang Fuhong, Sang Jizhang, et al. A New Inter-epoch Position Variation Constrained Navigation Algorithm for Stand-Alone GNSS Re‐ ceiver[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 21-27 doi: 10.13203/j.whugis20190062
    [12]
    Laurichesse D, Rouch C, Marmet F X, et al. Smartphone Applications for Precise Point Positioning [C]//The 30th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, 2017
    [13]
    Elmezayen A, El-Rabbany A. Precise Point Posi‐ tioning Using World's First Dual-Frequency GPS/ Galileo Smartphone[J]. Sensors, 2019, 19(11): 2 593 doi: 10.3390/s19112593
    [14]
    Wu Q, Sun M F, Zhou C J, et al. Precise Point Po‐ sitioning Using Dual-Frequency GNSS Observations on Smartphone[J]. Sensors, 2019, 19(9): 2 189 doi: 10.3390/s19092189
    [15]
    Chen B, Gao C F, Liu Y S, et al. Real-Time Pre‐ cise Point Positioning with a Xiaomi MI 8 Android Smartphone[J]. Sensors, 2019, 19(12): 2 835 doi: 10.3390/s19122835
    [16]
    Dabove P, Di Pietra V. Towards High Accuracy GNSS Real-Time Positioning with Smartphones [J]. Advances in Space Research, 2019, 63(1): 94-102 doi: 10.1016/j.asr.2018.08.025
    [17]
    Zhang K S, Jiao W H, Wang L, et al. Smart-RTK: Multi-GNSS Kinematic Positioning Approach on An‐ droid Smart Devices with Doppler-Smoothed-Code Filter and Constant Acceleration Model[J]. Advanc es in Space Research, 2019, 64(9): 1 662-1 674 doi: 10.1016/j.asr.2019.07.043
    [18]
    Geng J H, Li G C. On the Feasibility of Resolving Android GNSS Carrier-Phase Ambiguities[J]. Journal of Geodesy, 2019, 93(12): 2 621-2 635 doi: 10.1007/s00190-019-01323-0
    [19]
    Wanninger L, Heßelbarth A. GNSS Code and Car‐ rier Phase Observations of a Huawei P30 Smart‐ phone: Quality Assessment and Centimeter-Accu‐ rate Positioning[J]. GPS Solutions, 2020, 24(2): 1-9 doi: 10.1007/s10291-019-0948-6
    [20]
    史翔. 基于智能手机GNSS观测值的连续平滑定位算法[D]. 武汉: 武汉大学, 2019

    Shi Xiang. Continuous Smoothing Positioning Algo‐ rithm Based on GNSS Observations of Smartphones [D]. Wuhan: Wuhan University, 2019

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return