Citation: | ZHU Jianjun, SONG Yingchun, HU Jun, ZOU Bin, WU Lixin. Challenges and Development of Data Processing Theory in the Era of Surveying and Mapping Big Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1025-1031. DOI: 10.13203/j.whugis20210232 |
[1] |
刘经南, 郭文飞, 郭迟, 等. 智能时代泛在测绘的再思考[J]. 测绘学报, 2020, 49(4): 403-414 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202004001.htm
Liu Jingnan, Guo Wenfei, Guo Chi, et al. Rethinking Ubiquitous Mapping in the Intelligentage[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 403-414 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202004001.htm
|
[2] |
龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报·信息科学版, 2018, 43(2): 1 788-1 796 http://ch.whu.edu.cn/article/id/6262
Gong Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligenc[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 1 788-1 796 http://ch.whu.edu.cn/article/id/6262
|
[3] |
李德仁, 姚远, 邵振峰. 智慧城市中的大数据[J]. 武汉大学学报·信息科学版, 2014, 39(6): 631-640 http://ch.whu.edu.cn/article/id/2999
Li Deren, Yao Yuan, Shao Zhenfeng. Big Data in Smart City[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 631-640 http://ch.whu.edu.cn/article/id/2999
|
[4] |
宁津生. 测绘科学与技术转型升级发展战略研究[J]. 武汉大学报·信息科学版, 2019, 44(1): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201901001.htm
Ning Jinsheng. Research on the Development Strategy of Surveying and Mapping Science and Technology Transformation and Upgrading[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201901001.htm
|
[5] |
刘经南. 大数据与位置服务[J]. 测绘科学, 2014, 39(3): 3-9 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201403002.htm
Liu Jingnan. Big Data and Location Services[J]. Science of Surveying and Mapping, 2014, 39(3): 3-9 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201403002.htm
|
[6] |
郭雷. 不确定性动态系统的估计、控制与博弈[J]. 中国科学: 信息科学, 2020, 50(9): 1 327-1 344 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202009004.htm
Guo Lei. Estimation, Control, and Games of Dynamical Systems with Uncertainty[J]. Scientia Sinica: Informationis, 2020, 50(9): 1 327-1 344 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202009004.htm
|
[7] |
靳小龙, 王元卓, 程学旗. 大数据的研究体系与现状[J]. 信息通信技术, 2013, 7(6): 35-43 https://www.cnki.com.cn/Article/CJFDTOTAL-OXXT201306008.htm
Jin Xiaolong, Wang Yuanzhuo, Cheng Xueqi. Research System and Status of Big Data[J]. Information and Communications Technologies, 2013, 7(6): 35-43 https://www.cnki.com.cn/Article/CJFDTOTAL-OXXT201306008.htm
|
[8] |
李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4): 379-384 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201604002.htm
Li Deren. Towards Geo-Spatial Information Science in Big Data Era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 379-384 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201604002.htm
|
[9] |
Palpanas T, Vlachos M, Keogh E, et al. Onlineamnesic Approximation of Streaming Time Series[C]// IEEE International Conference on Data Engineering, Boston, MA, USA, 2004
|
[10] |
郑志明, 吕金虎, 韦卫, 等. 精准智能理论: 面向复杂动态对象的人工智能[J]. 中国科学: 信息科学, 2021, 51(4): 678-690
Zheng Zhiming, Lü Jinhu, Wei Wei, et al. Refined Intelligence Theory: Artificial Intelligence Towards Complex Dynamic Objects[J]. Scientia Sinica: Informationis, 2021, 51(4): 678-690
|
[11] |
吴华意, 黄蕊, 游兰, 等. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11) : 1 341-1 356 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201911002.htm
Wu Huayi, Huang Rui, You Lan, et al. Recent Progress in Taxi Trajectory Data Mining[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1 341-1 356 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201911002.htm
|
[12] |
Koyama C N, Watanabe M. Assessing the Impact of Precipitation on L-band SAR Forest Observation: An ALOS-2 Big Data Case Study in the Tropics[C]// The 13th European Conference on Synthetic Aperture Radar (EUSAR 2021), Online Conference, 2021
|
[13] |
黄露. 基于机器学习的汶川震区滑坡灾害气象预警模型研究[D]. 武汉: 中国地质大学, 2016
Huang Lu. Research on Meteorological Early-Warning Model of Landslides in Wenchuan Earthquake Area Based on Machine Learning[D]. Wuhan: China University of Geosciences, 2016
|
[14] |
沈焕锋, 刘露, 岳林蔚, 等. 多源DEM融合的高差拟合神经网络方法[J]. 测绘学报, 2018, 47(6): 854-863 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201806019.htm
Shen Huanfeng, Liu Lu, Yue Linwei, et al. A Multi-source DEM Fusion Method Based on Elevation Difference Fitting Neural Network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 854-863 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201806019.htm
|
[15] |
杨必胜, 宗泽亮, 陈驰, 等. 车载探地雷达地下目标实时探测法[J]. 测绘学报, 2020, 49(7) : 874-883 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202007009.htm
Yang Bisheng, Zong Zeliang, Chen Chi, et al. Real Time Approach for Underground Objects Detection from Vehicle-Borne Ground Penetrating Radar[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 874-883 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202007009.htm
|
[16] |
Qiu C, Tong X, Schmitt M, et al. Multi-level Feature Fusion-based CNN for Local Climate Zone Classification from Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2 793-2 806 doi: 10.1109/JSTARS.2020.2995711
|
[17] |
Zhu X X, Tuia D, Mou L, et al. Deep Learning in Remote Sensing: A Review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, DOI: 10.1109/MGRS.2017.2762307
|
[18] |
赵传, 郭海涛, 卢俊, 等. 基于深度残差网络的机载LiDAR点云分类[J]. 测绘学报, 2020, 49(2) : 202-213 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202002008.htm
Zhao Chuan, Guo Haitao, Lu Jun, et al. Airborne LiDAR Point Cloud Classification Based on Deep Residual Network[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 202-213 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202002008.htm
|
[19] |
Zhu Xiaoxiang, Montazeri S, Ali M, et al. Deep Learning Meets SAR: Concepts, Models, Pitfalls, and Perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, DOI: 10.1109/MGRS.2020.3046356
|
[20] |
Zhang L, Dong H, Zou B. Efficiently Utilizing Complex-Valued PolSAR Image Data via a Multi-task Deep Learning Framework[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157: 59-72 doi: 10.1016/j.isprsjprs.2019.09.002
|
[21] |
Brigot G, Simard M, Colin-Koeniguer E, et al. Retrieval of Forest Vertical Structure from PolInSAR Data by Machine Learning Using LiDAR-Derived Features[J]. Remote Sensing, 2019, 11(4): 381 doi: 10.3390/rs11040381
|
[22] |
张兵. 遥感大数据时代与智能信息提取[J]. 武汉大学学报·信息科学版, 2018, 43(12): 108-118 http://ch.whu.edu.cn/article/id/6270
Zhang Bing. Remotely Sensed Big Data Era and Intelligent Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 108-118 http://ch.whu.edu.cn/article/id/6270
|
[23] |
汤寓麟, 金绍华, 边刚, 等. 侧扫声呐识别沉船影像的迁移学习卷积神经网络法[J]. 测绘学报, 2021, 50(2) : 260-269
Tang Yulin, Jin Shaohua, Bian Gang, et al. The Transfer Learning with Convolutional Neural Network Method of Side-Scan Sonar to Identify Wreck Images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 260-269
|
[24] |
段佩祥, 钱海忠, 何海威, 等. 案例支撑下的朴素贝叶斯树状河系自动分级方法[J]. 测绘学报, 2019, 48(8) : 975-984 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201908005.htm
Duan Peixiang, Qian Haizhong, He Haiwei, et al. Naïve Bayes-based Automatic Classification Method of Tree-Like River Networks Upported by Cases[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 975-984 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201908005.htm
|
[25] |
刘青豪, 张永红, 邓敏, 等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3) : 396-404
Liu Qinghao, Zhang Yonghong, Deng Min, et al. Time Series Prediction Method of Large-Scale Surface Subsidence Based on Deep Learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404
|
[26] |
王鹤, 曾永年. 城市扩展极限学习机模型[J]. 测绘学报, 2018, 47(12): 1 680-1 690 doi: 10.11947/j.AGCS.2018.20170586
Wang He, Zeng Yongnian. Urban Expansion Model Based on Extreme Learning Machine[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12): 1 680-1 690 doi: 10.11947/j.AGCS.2018.20170586
|
[27] |
赵鹏大. 大数据时代呼唤各科学领域的数据科学[J]. 中国科技奖励, 2014(183): 29-30 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJL201409014.htm
Zhao Pengda. Big Data Era Calls for Data Science in Various Fields of Science[J]. Chin Sci Tech Award, 2014(183): 29-30 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJL201409014.htm
|