人工智能时代测绘遥感技术的发展机遇与挑战

龚健雅

龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报 ( 信息科学版), 2018, 43(12): 1788-1796. DOI: 10.13203/j.whugis20180082
引用本文: 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报 ( 信息科学版), 2018, 43(12): 1788-1796. DOI: 10.13203/j.whugis20180082
GONG Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1788-1796. DOI: 10.13203/j.whugis20180082
Citation: GONG Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1788-1796. DOI: 10.13203/j.whugis20180082

人工智能时代测绘遥感技术的发展机遇与挑战

基金项目: 

国家重点研发计划 2017YFB0503704

详细信息
    作者简介:

    龚健雅, 博士, 教授, 中国科学院院士, 长期从事地理信息理论和摄影测量与遥感基础研究。gongjy@whu.edu.cn

  • 中图分类号: P237

Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence

Funds: 

The National Key Research and Development Program of China 2017YFB0503704

More Information
    Author Bio:

    GONG Jianya, PhD, professor, Academician of Chinese Academy of Sciences, specializes in geo-informatics and photogrammetry.E-mail: gongjy@whu.edu.cn

  • 摘要: 人工智能技术迅猛发展将对各行各业造成巨大影响。测绘遥感是一个与人工智能密切相关的领域,在人工智能领域迅速发展的大环境下,测绘遥感学科既有很好的发展机遇,也面临很大的学科危机。首先介绍了人工智能的范畴和与测绘遥感相关的领域,然后介绍了人工智能两大热门领域——机器视觉和机器学习在摄影测量与遥感领域的应用进展,最后介绍了基于时空大数据的认知与推理研究进展,展示了测绘遥感的时空大数据在自然和社会感知、认知与推理的应用前景,希望测绘遥感学科在人工智能时代获得大发展。
    Abstract: Artificial intelligence(AI) will affect various fields and professions. Geoinformatics and remote sensing are closed the field of artificial intelligence. Our discipline will have a good development chance, also face a big challenge. This paper firstly introduces the domain of AI and the fields related geoinformatics and remote sensing, then presents the progresses of photogrammetry and remote sen-sing applications based on computing vision and machine learning. Finally, some research progresses involved perceive and reasoning based on space-time big data have revealed the application prospect in sensing, perceive and reasoning for the nature and society based on space-time data from geoinforma-tics and remote sensing. A desire is to push the quick development of geoinformatics and remote sen-sing in AI era.
  • 图  1   采用区域网平差方法为火星机器人导航定位

    Figure  1.   Using Block Adjustment to Navigate and Locate the Mars Robot

    图  2   武汉大学研制的无人驾驶汽车与室内智能机器人

    Figure  2.   The Automated Vehicle and the Indoors Intelligent Robot Designed by Wuhan University

    图  3   深度学习方法应用于点云数据滤波,自动提取数字高程模型

    Figure  3.   Deep Learning Applied in Point Cloud Data Filtering and Auto Extraction of DEM

    图  4   物理世界、人类社会和信息空间的关系

    Figure  4.   Relationship of Physical World, Human Society and Information Space

    图  5   长江流域天空地对地观测传感网示意图

    Figure  5.   Diagram of the Airborne and Spaceborne Earth Observation Sensor Web in Changjiang Region

    图  6   根据移动手机的位置信息揭示深圳市民主要活动区域、中心和社区边界

    Figure  6.   A Revealing Shenzhen Citizens' Main Live Region of Mobile Phones and the Border of Community According to the Location Information

    表  1   使用深度学习的影像内容检索方法与传统方法的精度比较

    Table  1   Accuracy Comparison Between the Way Using Deep Learning of Image Content Retrieval and the Traditional Ways

    类别 DCNN LBP-HF EFT-HOG
    查全率 精度 查全率 精度 查全率 精度
    油罐 0.947 2 0.987 6 0.717 9 0.605 4 0.827 6 0.808 2
    飞机 0.946 7 0.988 3 0.725 8 0.611 1 0.832 1 0.804 7
    立交桥 0.947 2 0.930 1 0.664 6 0.584 9 0.786 2 0.761 5
    田径场 0.954 4 0.922 0 0.666 7 0.571 6 0.775 7 0.741 9
    下载: 导出CSV
  • [1]

    Wu Yingnian, Xie Jianwen, Lu Yang, et al. Sparse and Deep Generalizations of the FRAME Model[J]. Annals of Mathematical Sciences and Applications, 2018, 3(1):1-9

    [2]

    Marr D. Vision:A Computational Investigation into the Human Representation and Processing of Visual Information[M]. Cambridge:MIT Press, 1982

    [3]

    Canny A. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3d39d0b11988c5f90bf44b10d764f020

    [4]

    Horn B. Robot Vision[M]. Cambridge:MIT Press, 1986

    [5]

    Duda R, Hart P. Use of the Hough Transformation to Detect Lines and Curves in Pictures[J]. Comm ACM, 1975, 15(1):11-15 doi: 10.1145-361237.361242/

    [6]

    Marr D, Hildreth E. Theory of Edge Detection[J]. Proceedings of the Royal Society of London, Series B:Biological Sciences, 1980, 207(1167):187-217 doi: 10.1098/rspb.1980.0020

    [7]

    Boyle W S, Smith G E. Charge Coupled Semiconductor Devices[J]. Bell Syst Tech, 1970, 49(4):587-593 doi: 10.1002/bltj.1970.49.issue-4

    [8]

    Forsyth D A, Ponce J. Computer Vision:A Mo-dern Approach[M]. New Jersey:Prentice Hall Professional Technical Reference, 2002:133-149

    [9]

    Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for Mobile Robots[J]. Artif Intell, 2001, 128:99-141 doi: 10.1016/S0004-3702(01)00069-8

    [10]

    Marquardt D W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. Journal of the Society for Industrial & Applied Mathema-tics, 2006, 11(2):431-441 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_10306def77bd8de4af3eb28b73def55a

    [11]

    Hansen P C. Analysis of Discrete Ⅲ-Posed Pro-blems by Means of the L-Curve[J]. SIAM Review, 2006, 34(4):561-580

    [12]

    Cummins M, Newman P. FAB-MAP:Probabilistic Localization and Mapping in the Space of Appea-rance[J]. International Journal of Robotics Research, 2008, 27(6):647-665 doi: 10.1177/0278364908090961

    [13]

    Li R, Archinal B A, Arvidson R E, et al. Spirit Rover Localization and Topographic Mapping at the Landing Site of Gusev Crater, Mars[J]. Journal of Geophysical Research Atmospheres, 2006, 111(E2):516-531 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99efef4b92c5ff9b3c3d270ee0c97ed6

    [14]

    Bengio Y, Lamblin P, Popovici D, et al. Greedy Layer-Wise Training of Deep Networks[C].21th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2007

    [15]

    Krizhevsky A, Sutskever I, Hinton G E. Imagenet Classification with Deep Convolutional Neural Networks[C]. Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012

    [16]

    Hinton G, Deng L, Yu D, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition:The Shared Views of Four Research Groups[J]. IEEE Transactions on Signal Processing Magazine, 2012, 29(6):82-97 doi: 10.1109/MSP.2012.2205597

    [17]

    Kendall A, Grimes M, Cipolla R. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[C]. The IEEE International Confe-rence on Computer Vision, Santiago, Chile, 2015

    [18]

    The KITTI Vision Benchmark Suite[OL]. http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo, 2015

    [19]

    Cheng G, Wang Y, Xu S, et al. Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2017, 55(6):3322-3337 doi: 10.1109/TGRS.2017.2669341

    [20]

    Li P, Zang Y, Wang C, et al. Road Network Extraction via Deep Learning and Line Integral Convolution[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016

    [21]

    Mnih V, Hinton G E. Learning to Detect Roads in High-Resolution Aerial Images[C].European Conference on Computer Vision, Crete, Greece, 2010

    [22]

    Vakalopoulou M, Karantzalos K, Komodakis N, et al. Building Detection in very High Resolution Multispectral Data with Deep Learning Features[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015

    [23] 龚健雅, 季顺平.从摄影测量到计算机视觉[J].武汉大学学报·信息科学版, 2017, 42(11):1518-1522 http://ch.whu.edu.cn/CN/abstract/abstract5865.shtml

    Gong Jianya, Ji Shunping. From Photogrammetry to Computer Vision[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1518-1522 http://ch.whu.edu.cn/CN/abstract/abstract5865.shtml

    [24]

    Hu X X, Yuan Y. Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud[J]. Remote Sensing, 2016, 8(9):730 doi: 10.3390/rs8090730

    [25] 陈能成, 王晓蕾, 肖长江, 等.事件驱动的城市信息聚焦服务模型与系统[J].武汉大学学报·信息科学版, 2015, 40(12):1633-1638 http://ch.whu.edu.cn/CN/abstract/abstract3392.shtml

    Chen Nengcheng, Wang Xiaolei, Xiao Changjiang, et al. Model and System for Event-Driven Focusing Service of Information Resources in Smart City[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12):1633-1638 http://ch.whu.edu.cn/CN/abstract/abstract3392.shtml

    [26] 方志祥, 李清泉, 萧世伦.利用时间地理进行位置相关的时空可达性表达[J].武汉大学学报·信息科学版, 2010, 35(9):1091-1095 http://ch.whu.edu.cn/CN/abstract/abstract1049.shtml

    Fang Zhixiang, Li Qingquan, Shaw Shihlung. Representation of Location-Specific Space-Time Accessibility Based on Time Geography Framework[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9):1091-1095 http://ch.whu.edu.cn/CN/abstract/abstract1049.shtml

图(6)  /  表(1)
计量
  • 文章访问数:  4980
  • HTML全文浏览量:  1228
  • PDF下载量:  1661
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-11
  • 发布日期:  2018-12-04

目录

    /

    返回文章
    返回