Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence
-
摘要: 人工智能技术迅猛发展将对各行各业造成巨大影响。测绘遥感是一个与人工智能密切相关的领域,在人工智能领域迅速发展的大环境下,测绘遥感学科既有很好的发展机遇,也面临很大的学科危机。首先介绍了人工智能的范畴和与测绘遥感相关的领域,然后介绍了人工智能两大热门领域——机器视觉和机器学习在摄影测量与遥感领域的应用进展,最后介绍了基于时空大数据的认知与推理研究进展,展示了测绘遥感的时空大数据在自然和社会感知、认知与推理的应用前景,希望测绘遥感学科在人工智能时代获得大发展。Abstract: Artificial intelligence(AI) will affect various fields and professions. Geoinformatics and remote sensing are closed the field of artificial intelligence. Our discipline will have a good development chance, also face a big challenge. This paper firstly introduces the domain of AI and the fields related geoinformatics and remote sensing, then presents the progresses of photogrammetry and remote sen-sing applications based on computing vision and machine learning. Finally, some research progresses involved perceive and reasoning based on space-time big data have revealed the application prospect in sensing, perceive and reasoning for the nature and society based on space-time data from geoinforma-tics and remote sensing. A desire is to push the quick development of geoinformatics and remote sen-sing in AI era.
-
-
表 1 使用深度学习的影像内容检索方法与传统方法的精度比较
Table 1 Accuracy Comparison Between the Way Using Deep Learning of Image Content Retrieval and the Traditional Ways
类别 DCNN LBP-HF EFT-HOG 查全率 精度 查全率 精度 查全率 精度 油罐 0.947 2 0.987 6 0.717 9 0.605 4 0.827 6 0.808 2 飞机 0.946 7 0.988 3 0.725 8 0.611 1 0.832 1 0.804 7 立交桥 0.947 2 0.930 1 0.664 6 0.584 9 0.786 2 0.761 5 田径场 0.954 4 0.922 0 0.666 7 0.571 6 0.775 7 0.741 9 -
[1] Wu Yingnian, Xie Jianwen, Lu Yang, et al. Sparse and Deep Generalizations of the FRAME Model[J]. Annals of Mathematical Sciences and Applications, 2018, 3(1):1-9
[2] Marr D. Vision:A Computational Investigation into the Human Representation and Processing of Visual Information[M]. Cambridge:MIT Press, 1982
[3] Canny A. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3d39d0b11988c5f90bf44b10d764f020
[4] Horn B. Robot Vision[M]. Cambridge:MIT Press, 1986
[5] Duda R, Hart P. Use of the Hough Transformation to Detect Lines and Curves in Pictures[J]. Comm ACM, 1975, 15(1):11-15 doi: 10.1145-361237.361242/
[6] Marr D, Hildreth E. Theory of Edge Detection[J]. Proceedings of the Royal Society of London, Series B:Biological Sciences, 1980, 207(1167):187-217 doi: 10.1098/rspb.1980.0020
[7] Boyle W S, Smith G E. Charge Coupled Semiconductor Devices[J]. Bell Syst Tech, 1970, 49(4):587-593 doi: 10.1002/bltj.1970.49.issue-4
[8] Forsyth D A, Ponce J. Computer Vision:A Mo-dern Approach[M]. New Jersey:Prentice Hall Professional Technical Reference, 2002:133-149
[9] Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for Mobile Robots[J]. Artif Intell, 2001, 128:99-141 doi: 10.1016/S0004-3702(01)00069-8
[10] Marquardt D W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. Journal of the Society for Industrial & Applied Mathema-tics, 2006, 11(2):431-441 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_10306def77bd8de4af3eb28b73def55a
[11] Hansen P C. Analysis of Discrete Ⅲ-Posed Pro-blems by Means of the L-Curve[J]. SIAM Review, 2006, 34(4):561-580
[12] Cummins M, Newman P. FAB-MAP:Probabilistic Localization and Mapping in the Space of Appea-rance[J]. International Journal of Robotics Research, 2008, 27(6):647-665 doi: 10.1177/0278364908090961
[13] Li R, Archinal B A, Arvidson R E, et al. Spirit Rover Localization and Topographic Mapping at the Landing Site of Gusev Crater, Mars[J]. Journal of Geophysical Research Atmospheres, 2006, 111(E2):516-531 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99efef4b92c5ff9b3c3d270ee0c97ed6
[14] Bengio Y, Lamblin P, Popovici D, et al. Greedy Layer-Wise Training of Deep Networks[C].21th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2007
[15] Krizhevsky A, Sutskever I, Hinton G E. Imagenet Classification with Deep Convolutional Neural Networks[C]. Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012
[16] Hinton G, Deng L, Yu D, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition:The Shared Views of Four Research Groups[J]. IEEE Transactions on Signal Processing Magazine, 2012, 29(6):82-97 doi: 10.1109/MSP.2012.2205597
[17] Kendall A, Grimes M, Cipolla R. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[C]. The IEEE International Confe-rence on Computer Vision, Santiago, Chile, 2015
[18] The KITTI Vision Benchmark Suite[OL]. http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo, 2015
[19] Cheng G, Wang Y, Xu S, et al. Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2017, 55(6):3322-3337 doi: 10.1109/TGRS.2017.2669341
[20] Li P, Zang Y, Wang C, et al. Road Network Extraction via Deep Learning and Line Integral Convolution[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016
[21] Mnih V, Hinton G E. Learning to Detect Roads in High-Resolution Aerial Images[C].European Conference on Computer Vision, Crete, Greece, 2010
[22] Vakalopoulou M, Karantzalos K, Komodakis N, et al. Building Detection in very High Resolution Multispectral Data with Deep Learning Features[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015
[23] 龚健雅, 季顺平.从摄影测量到计算机视觉[J].武汉大学学报·信息科学版, 2017, 42(11):1518-1522 http://ch.whu.edu.cn/CN/abstract/abstract5865.shtml Gong Jianya, Ji Shunping. From Photogrammetry to Computer Vision[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1518-1522 http://ch.whu.edu.cn/CN/abstract/abstract5865.shtml
[24] Hu X X, Yuan Y. Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud[J]. Remote Sensing, 2016, 8(9):730 doi: 10.3390/rs8090730
[25] 陈能成, 王晓蕾, 肖长江, 等.事件驱动的城市信息聚焦服务模型与系统[J].武汉大学学报·信息科学版, 2015, 40(12):1633-1638 http://ch.whu.edu.cn/CN/abstract/abstract3392.shtml Chen Nengcheng, Wang Xiaolei, Xiao Changjiang, et al. Model and System for Event-Driven Focusing Service of Information Resources in Smart City[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12):1633-1638 http://ch.whu.edu.cn/CN/abstract/abstract3392.shtml
[26] 方志祥, 李清泉, 萧世伦.利用时间地理进行位置相关的时空可达性表达[J].武汉大学学报·信息科学版, 2010, 35(9):1091-1095 http://ch.whu.edu.cn/CN/abstract/abstract1049.shtml Fang Zhixiang, Li Qingquan, Shaw Shihlung. Representation of Location-Specific Space-Time Accessibility Based on Time Geography Framework[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9):1091-1095 http://ch.whu.edu.cn/CN/abstract/abstract1049.shtml