WANG Jiatong, HU Yufeng, LI Zhenhong, ZHANG Chenglong, ZHANG Miaomiao, YANG Jing, JIANG Wandong. Rapid Estimation of Snow Water Equivalent Using GPS-IR Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1666-1676. DOI: 10.13203/j.whugis20210199
Citation: WANG Jiatong, HU Yufeng, LI Zhenhong, ZHANG Chenglong, ZHANG Miaomiao, YANG Jing, JIANG Wandong. Rapid Estimation of Snow Water Equivalent Using GPS-IR Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1666-1676. DOI: 10.13203/j.whugis20210199

Rapid Estimation of Snow Water Equivalent Using GPS-IR Observations

Funds: 

The National Natural Science Foundation of China 41941019

The National Natural Science Foundation of China 41904020

the Natural Science Research Project of Shaan'xi Province 2020JQ-350

the Science and Technology Innovation Team of Shaan'xi Province 2021TD-51

the Fundamental Research Funds for the Central Universities, CHD 300102260301

the Fundamental Research Funds for the Central Universities, CHD 300102261108

the Fundamental Research Funds for the Central Universities, CHD 300102261404

the ESA-MOST DRAGON-5 Project 59339

More Information
  • Author Bio:

    WANG Jiatong, postgraduate, specializes in GNSS-IR snow monitoring. E-mail: jiatong_wang417@163.com

  • Corresponding author:

    HU Yufeng, PhD, lecturer. E‐mail: yfhu@chd.edu.cn

  • Received Date: April 21, 2021
  • Published Date: November 04, 2021
  •   Objectives  Snow water equivalent (SWE) plays a key role in climate change prediction, water resource management and agricultural production planning. GPS interferometric reflectometry (GPS-IR) has been proven to be a powerful tool to monitor snow depth. An efficient framework is presented to rapidly estimate SWE from GPS-IR derived snow depth.
      Methods  Firstly, the daily snow depth product is obtained using GPS observations with GPS-IR technique. Secondly, an SWE conversion model is constructed using snow depth, SWE and climate observations from snow telemetry (SNOTEL) stations in the study region. Finally, using the climate forecast data provided by the historical and projected climate data for North America (ClimateNA) project as parameter constraints, the daily GPS snow depth product is converted into SWEs.
      Results  The application of the proposed framework to GPS data from the plate boundary observatory (PBO), USA shows that GPS-IR derived snow depth product is reliable (R2 = 0.98, RMSE(root mean square error)= 11.1 cm, Bias =-3.7 cm).The daily GPS snow depth can be converted into SWE with high reliability (R2 = 0.98, RMSE = 4.2 cm, Bias =-2.5 cm) and stability. The rapid conversion model has high spatiotemporal stability with most of the residuals lying with the range of [-5, 5] cm. The additional uncertainties introduced by the climate forecast data and the spatial variations of snow depths have limited impacts on the estimation of SWE.
      Conclusions  It is believed that the proposed framework can not only provide guidance to rapidly estimate SWE inregions lacking snow monitoring equipment, but also provide a reference to enhance existing snow observation network and improve accumulated snow products.
  • [1]
    Walsh J E. Snow Cover and Atmospheric Variability: Changes in the Snow Covering the Earth's Surface Affect both Daily Weather and Long-Term Climate[J]. American Scientist, 1984, 72(1): 50-57
    [2]
    Beniston M. Climatic Change in Mountain Regions: A Review of Possible Impacts[M]. Dordrecht: Springer, 2003
    [3]
    Elder K, Rosenthal W, Davis R E. Estimating the Spatial Distribution of Snow Water Equivalence in a Montane Watershed[J]. Hydrological Processes, 1998, 12(11): 1 793-1 808 doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11%3C1793::AID-HYP695%3E3.0.CO;2-K/abstract
    [4]
    McCreight J L, Small E E. Modeling Bulk Density and Snow Water Equivalent Using Daily Snow Depth Observations[J]. The Cryosphere, 2014, 8 (2): 521-536 doi: 10.5194/tc-8-521-2014
    [5]
    Mizukami N, Perica S. Spatiotemporal Characteristics of Snowpack Density in the Mountainous Regions of the Western United States[J]. Journal of Hydrometeorology, 2008, 9(6): 1 416-1 426 doi: 10.1175/2008JHM981.1
    [6]
    Larson K M, Gutmann E D, Zavorotny V U, et al. Can We Measure Snow Depth with GPS Receivers? [J]. Geophysical Research Letters, 2009, 36(17): L17502 doi: 10.1029/2009GL039430
    [7]
    Larson K M. GPS Interferometric Reflectometry: Applications to Surface Soil Moisture, Snow Depth, and Vegetation Water Content in the Western United States[J]. Wiley Interdisciplinary Reviews: Water, 2016, 3(6): 775-787 doi: 10.1002/wat2.1167
    [8]
    Hefty J, Gerhatova L. Experience with Snow Depth Sensing Using GPS Multipath Gained at Some Permanent Stations in Central Europe[C]//The EGU General Assembly Conference Abstracts, Vienna, Austria, 2013
    [9]
    Jin S G, Najibi N. Sensing Snow Height and Surface Temperature Variations in Greenland from GPS Reflected Signals[J]. Advances in Space Research, 2014, 53(11): 1 623-1 633 doi: 10.1016/j.asr.2014.03.005
    [10]
    Gutmann E D, Larson K M, Williams M W, et al. Snow Measurement by GPS Interferometric Reflectometry: An Evaluation at Niwot Ridge, Colorado[J]. Hydrological Processes, 2012, 26(19): 2 951- 2 961 doi: 10.1002/hyp.8329
    [11]
    Larson K M, Nievinski F G. GPS Snow Sensing: Results from the EarthScope Plate Boundary Observatory[J]. GPS Solutions, 2013, 17(1): 41-52 doi: 10.1007/s10291-012-0259-7
    [12]
    Gleason S, Gebre-Egziabher D. GNSS Applications and Methods[M]. London: Artech House, 2009
    [13]
    De Michele C, Avanzi F, Ghezzi A, et al. Investigating the Dynamics of Bulk Snow Density in Dry and Wet Conditions Using a One-Dimensional Model[J]. The Cryosphere, 2013, 7(2): 433-444 doi: 10.5194/tc-7-433-2013
    [14]
    Meløysund V, Leira B, Høiseth K V, et al. Predicting Snow Density Using Meteorological Data[J]. Meteorological Applications, 2007, 14(4): 413-423 doi: 10.1002/met.40
    [15]
    Hill D F, Burakowski E A, Crumley R L, et al. Converting Snow Depth to Snow Water Equivalent Using Climatological Variables[J]. The Cryosphere, 2019, 13(7): 1 767-1 784 doi: 10.5194/tc-13-1767-2019
    [16]
    Jacobson M D. Estimating Snow Water Equivalent for a Slightly Tilted Snow-Covered Prairie Grass Field by GPS Interferometric Reflectometry[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2 014(1): 1-9 doi: 10.1186/1687-6180-2014-61?site=asp.eurasipjournals.springeropen.com
    [17]
    McCreight J L, Small E E, Larson K M. Snow Depth, Density, and SWE Estimates Derived from GPS Reflection Data: Validation in the Western US[J]. Water Resources Research, 2014, 50(8): 6 892- 6 909 doi: 10.1002/2014WR015561
    [18]
    Arogundade A B, Qualls R J. Is Climate Really Changing? Visible Signs of Climate Change in Idaho [C]//The 38th Annual Convention of the National Society of Black Engineers, Pittsburgh, Pennsylvania, America, 2012
    [19]
    Herring T A, Melbourne T I, Murray M H, et al. Plate Boundary Observatory and Related Networks: GPS Data Analysis Methods and Geodetic Products[J]. Reviews of Geophysics, 2016, 54(4): 759-808 doi: 10.1002/2016RG000529
    [20]
    Wang T L, Hamann A, Spittlehouse D L, et al. ClimateWNA -High-Resolution Spatial Climate Data for Western North America[J]. Journal of Applied Meteorology and Climatology, 2012, 51 (1): 16-29 doi: 10.1175/JAMC-D-11-043.1
    [21]
    Wang T L, Hamann A, Spittlehouse D, et al. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America[J]. PLoS One, 2016, 11(6) : e0156720 doi: 10.1371/journal.pone.0156720
    [22]
    吴继忠, 王天, 吴玮. 利用GPS-IR监测土壤含水量的反演模型[J]. 武汉大学学报·信息科学版, 2018, 43(6): 887-892 doi: 10.13203/j.whugis20160088

    Wu Jizhong, Wang Tian, Wu Wei. Retrieval Model for Soil Moisture Content Using GPS-Interferometric Reflectometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 887-892 doi: 10.13203/j.whugis20160088
    [23]
    Roesler C, Larson K M. Software Tools for GNSS Interferometric Reflectometry (GNSS-IR)[J]. GPS Solutions, 2018, 22(3): 1-10 http://smartsearch.nstl.gov.cn/paper_detail.html?id=086f05c89c7e7a22cc60a6a86ad6711a
    [24]
    Larson K M, Small E E, Gutmann E, et al. Using GPS Multipath to Measure Soil Moisture Fluctuations: Initial Results[J]. GPS Solutions, 2008, 12 (3): 173-177 doi: 10.1007/s10291-007-0076-6
    [25]
    Lundberg A, Richardson-Näslund C, Andersson C. Snow Density Variations: Consequences for Ground-Penetrating Radar[J]. Hydrological Processes, 2006, 20(7): 1 483-1 495 doi: 10.1002/hyp.5944
    [26]
    Jonas T, Marty C, Magnusson J. Estimating the Snow Water Equivalent from Snow Depth Measurements in the Swiss Alps[J]. Journal of Hydrology, 2009, 378(1/2): 161-167 http://www.researchgate.net/profile/Christoph_Marty/publication/222813786_Estimating_the_snow_water_equivalent_from_snow_depth_measurements_in_the_Swiss_Alps._J_Hydrol/links/0f31752ebb793cb8d1000000.pdf
    [27]
    Hill D F, Burakowski E A, Crumley R L, et al. Converting Snow Depth to Snow Water Equivalent Using Climatological Variables[J]. The Cryosphere, 2019, 13(7): 1 767-1 784 doi: 10.5194/tc-13-1767-2019
    [28]
    Gutmann E D, Larson K M, Williams M W, et al. Snow Measurement by GPS Interferometric Reflectometry: An Evaluation at Niwot Ridge, Colorado[J]. Hydrological Processes, 2012, 26(19): 2 951- 2 961 doi: 10.1002/hyp.8329
    [29]
    Nievinski F G, Larson K M. Inverse Modeling of GPS Multipath for Snow Depth Estimation-Part I: Formulation and Simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (10): 6 555-6 563 doi: 10.1109/TGRS.2013.2297681
    [30]
    Sturm M, Taras B, Liston G E, et al. Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes[J]. Journal of Hydrometeorology, 2010, 11(6): 1 380-1 394 doi: 10.1175/2010JHM1202.1
    [31]
    Dyer J L, Mote T L. Spatial Variability and Trends in Observed Snow Depth over North America[J]. Geophysical Research Letters, 2006, 33 (16) : L16503 doi: 10.1029/2006GL027258
  • Related Articles

    [1]ZHONG Heping, TANG Jinsong, MA Mengbo, WU Haoran. Complex Image Registration Algorithm and Its Optimization for Interferometric Synthetic Aperture Sonar in Shared Memory Environment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1169-1173. DOI: 10.13203/j.whugis20180051
    [2]WANG Hongyan, GUAN Xuefeng, WU Huayi. A Collaborative Parallel Spatial Interpolation Algorithmon Oriented Towards the Heterogeneous CPU/GPU System[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1688-1695. DOI: 10.13203/j.whugis20150361
    [3]ZHONG Heping, ZHANG Sen, TIAN Zhen, TANG Jinsong. A Fast Quality-guided Phase Unwrapping Algorithmin Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 756-760. DOI: 10.13203/j.whugis20130518
    [4]ZHU Jianfeng, CHEN Min. Supply Chain Knowledge Collaboration Based on Ontologyin Semantic Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 123-126.
    [5]CHEN Jing, XIANG Longgang, ZHU Xinyan. Integrated Management of Distributed Heterogeneous Raster Spatial Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1094-1096.
    [6]FU Xiaojing, ZHANG Guoyin, MA Chunguang. An Identity-based Authenticated Key Agreement Sheme for Heterogeneous Sensor Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 582-586.
    [7]MA Chunguang, CHU Zhenjiang, WANG Jiuru, WANG Huiqiang. A Framework for Key Management in Heterogeneous Sensor Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 509-511.
    [8]SHA Zongyao, LI Xiaolei. Algorithm of Mining Spatial Association Data Under Spatially Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1480-1484.
    [9]WU Mengquan, SONG Xiaodong, CUI Weihong. On Ontology-Driven Heterogeneous Geographic Data Set Integration[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 915-918.
    [10]Li Yong. Research of Process Real-time Communication Based on Heterogeneous Networks[J]. Geomatics and Information Science of Wuhan University, 1999, 24(4): 362-366.

Catalog

    Article views (1487) PDF downloads (106) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return