WU Jizhong, WANG Tian, WU Wei. Retrieval Model for Soil Moisture Content Using GPS-Interferometric Reflectometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 887-892. DOI: 10.13203/j.whugis20160088
Citation: WU Jizhong, WANG Tian, WU Wei. Retrieval Model for Soil Moisture Content Using GPS-Interferometric Reflectometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 887-892. DOI: 10.13203/j.whugis20160088

Retrieval Model for Soil Moisture Content Using GPS-Interferometric Reflectometry

Funds: 

The National Natural Science Foundation of China 41504024

More Information
  • Author Bio:

    WU Jizhong, PhD, associate professor, specializes in GNSS precise position. E-mail: jzwumail@163.com

  • Received Date: September 08, 2016
  • Published Date: June 04, 2018
  • GPS-interferometric reflectometry can be used to infer temporal changes in near surface, soil moisture content. To estimate reliable GPS interferogram metrics such as phase and amplitude, an improved estimation method based on the GPS signal-to-noise ratio (SNR) data is presented, and a retrieval model for soil moisture content is constructed. Experiments indicate that the improved method is capable of estimating accurate and reliable GPS interferogram metrics as compared to the common method. The SNR phase shows a nearly linear relationship to the soil moisture content. Furthermore, a linear retrieval model for soil moisture content can be achieved, and the model is sensitive to consecutive precipitation.
  • [1]
    Katzberg S J, Torres O, Grant M S, et al. Utilizing Calibrated GPS Reflected Signals to Estimate Soil Reflectivity and Dielectric Constant:Results from SMEX02[J]. Remote Sensing of Environment, 2005, 100(1):17-28 http://www.sciencedirect.com/science/article/pii/S0034425705002932
    [2]
    Rodriguez-Alvarez N, Bosch-Lluis X, Camps A, et al. Soil Moisture Retrieval Using GNSS-R Techniques:Experimental Results Over a Bare Soil Field[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11):3616-3624 doi: 10.1109/TGRS.2009.2030672
    [3]
    刘经南, 邵连军, 张训械, 等.GNSS-R研究进展及其关键技术[J].武汉大学学报·信息科学版, 2007, 32(11):955-960 http://ch.whu.edu.cn/CN/abstract/abstract2030.shtml

    Liu Jingnan, Shao Lianjun, Zhang Xunxie, et al. Advances in GNSS-R Studies and Key Technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11):955-960 http://ch.whu.edu.cn/CN/abstract/abstract2030.shtml
    [4]
    严颂华, 龚健雅, 张训械, 等.GNSS-R测量地表土壤湿度的地基实验[J].地球物理学报, 2011, 51(11):2735-2744 doi: 10.3969/j.issn.0001-5733.2011.11.003

    Yan Songhua, Gong Jianya, Zhang Xunxie, et al. Ground Based GNSS-R Observations for Soil Moisture[J]. Chinese Journal of Geophysics, 2011, 54(11):2735-2744 doi: 10.3969/j.issn.0001-5733.2011.11.003
    [5]
    Alonso-Arroyo A, Camps A, Aguasca A, et al. Dual-polarization GNSS-R Interference Pattern Technique for Soil Moisture Mapping[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1533-1544 doi: 10.1109/JSTARS.2014.2320792
    [6]
    Wan Wei, Bai Weihua, Zhao Limin, et al. Initial Results of China's GNSS-R Airborne Campaign:Soil Moisture Retrievals[J]. Science Bulletin, 2015, 60(10):964-971 doi: 10.1007/s11434-015-0789-9
    [7]
    Larson K M, Small E E, Gutmann E, et al. Using GPS Multipath to Measure Soil Moisture Fluctuations:Initial Results[J]. GPS Solutions, 2008, 12(3):173-177 doi: 10.1007/s10291-007-0076-6
    [8]
    Larson K M, Braun J, Small E E, et al. GPS Multipath and Its Relation to Near-surface Soil Moisture Content[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1):91-99 doi: 10.1109/JSTARS.2009.2033612
    [9]
    Chew C, Small E E, Larson K M, et al. Effects of Near-surface Soil Moisture on GPS SNR Data:Development of a Retrieval Algorithm for Volumetric Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):537-543 doi: 10.1109/TGRS.2013.2242332
    [10]
    Vey S, Wickert J, Güntner A, et al. Derivation of Near-surface Soil Moisture from the GNSS Site Sutherland, South Africa[C]. Workshop of GNSS-Reflectometry, Brest, France, 2013
    [11]
    敖敏思, 朱建军, 胡友健, 等.利用SNR观测值进行GPS土壤湿度监测[J].武汉大学学报·信息科学版, 2015, 40(1):117-120 http://ch.whu.edu.cn/CN/abstract/abstract3167.shtml

    Ao Minsi, Zhu Jianjun, Hu Youjian, et al. Comparative Experiments on Soil Moisture Monitoring with GPS SNR Observations[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):117-120 http://ch.whu.edu.cn/CN/abstract/abstract3167.shtml
    [12]
    Nolan M, Fatland D R. Penetration Depth as a DInSAR Observable and Proxy for Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3):532-537 doi: 10.1109/TGRS.2003.809931
    [13]
    Comp C J, Axelrad P. Adaptive SNR-based Carrier Phase Multipath Mitigation Technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):264-276 doi: 10.1109/7.640284
  • Related Articles

    [1]LU Binbin, TIAN Xiaoxi, QIN Sixian, SHI Yilin, LI Jiansong. Urban Land Carrying Capacity Evaluation of Wuhan City with Geographically Weighted Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 430-438. DOI: 10.13203/j.whugis20220778
    [2]LU Binbin, GE Yong, QIN Kun, ZHENG Jianghua. A Review on Geographically Weighted Regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1356-1366. DOI: 10.13203/j.whugis20190346
    [3]LUO Minghai, JIANG Zilong, CHENG Qi, QIN Sixian, YANG Nana, ZHANG Xinyue. Carrying Capacity Evaluation of Land Resources in Wuhan Based on the Geographical Condition Monitoring[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2317-2324. DOI: 10.13203/j.whugis20180389
    [4]NIE Lei, SHU Hong, LIU Yan. Interpolation of Monthly Average Temperature by Using (Mixed) Geographically Weighted Regression Kriging in the Complex Terrain Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1553-1559. DOI: 10.13203/j.whugis20160433
    [5]LIU Xiaojing, GUI Zhipeng, CAO Jun, LI Rui, WU Huayi. Spatiotemporal-Aware Hybrid Prediction Model for Response Time of Web Map Services by Integrating GWR and STARMA[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 951-958. DOI: 10.13203/j.whugis20160370
    [6]LU Binbin, YANG Huan, SUN Huabo, YU Qingde. Algorithm of Approximating Road Network Distance Via the Minkowski Distance[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1373-1380. DOI: 10.13203/j.whugis20160225
    [7]WANG Xu, LIN Zheng, ZHANG Zhi, LI Dan. Modelling the Spatial Distribution of Lake Surface Water Temperature of the Thaw Lakes in Arctic Coastal Plain Using Geographically Weighted Regression Model[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 918-924. DOI: 10.13203/j.whugis20140411
    [8]MA Ronghua, HE Zengyou, . Mining Complete and Correct Frequent Neighboring Class Sets from Spatial Databases[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 115-119.
    [9]YU Leiyi. Study on the Architecture of GIS Grid[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 153-156.
    [10]LIU Yanxiong, CHEN Yongqi, LIU Jingnan. Determination of Weighted Mean Tropospheric Temperature Using Ground Meteorological Measurement[J]. Geomatics and Information Science of Wuhan University, 2000, 25(5): 400-404.

Catalog

    Article views (1983) PDF downloads (237) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return