Citation: | GUO Chen, XU Qiang, DONG Xiujun, LIU Xiaosha, SHE Jinxing. Geohazard Recognition by Airborne LiDAR Technology in Complex Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547. DOI: 10.13203/j.whugis20210121 |
[1] |
Santangelo M, Cardinali M, Rossi M, et al. Remote Landslide Mapping Using a Laser Rangefinder Binocular and GPS[J]. Natural Hazards and Earth System Sciences, 2010, 10(12): 2 539-2 546 doi: 10.5194/nhess-10-2539-2010
|
[2] |
Nichol J, Wong M S. Detection and Interpretation of Landslides Using Satellite Images[J]. Land Degradation and Development, 2005, 16(3): 243-255 doi: 10.1002/ldr.648
|
[3] |
李为乐, 许强, 陆会燕, 等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报·信息科学版, 2019, 44(7): 1 043-1 053 doi: 10.13203/j.whugis20190090
Li Weile, Xu Qiang, Lu Huiyan, et al. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment[J]. Geomatics and Information Science of Wuhan University, 2019, 44 (7): 1 043-1 053 doi: 10.13203/j.whugis20190090
|
[4] |
Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198 doi: 10.1016/j.rse.2017.11.022
|
[5] |
Schlögel R, Doubre C, Malet J P, et al. Landslide Deformation Monitoring with ALOS/PALSAR Imagery: A D-InSAR Geomorphological Interpretation Method[J]. Geomorphology, 2015, 231: 314-330 doi: 10.1016/j.geomorph.2014.11.031
|
[6] |
Intrieri E, Raspini F, Fumagalli A, et al. The Maoxian Landslide as Seen from Space: Detecting Precursors of Failure with Sentinel-1 Data[J]. Landslides, 2018, 15(1): 123-133 doi: 10.1007/s10346-017-0915-7
|
[7] |
Gorum T, Fan X, van Westen C J, et al. Distribution Pattern of Earthquake-Induced Landslides Triggered by the 12 May 2008 Wenchuan Earthquake [J]. Geomorphology, 2011, 133(3/4): 152-167 http://www.onacademic.com/detail/journal_1000035387115210_cb3f.html
|
[8] |
Rossi G, Tanteri L, Tofani V, et al. Multitemporal UAV Surveys for Landslide Mapping and Characterization[J]. Landslides, 2018, 15(5): 1 045-1 052 doi: 10.1007/s10346-018-0978-0
|
[9] |
Fiorucci F, Cardinali M, Carlà R, et al. Seasonal Landslide Mapping and Estimation of Landslide Mobilization Rates Using Aerial and Satellite Images [J]. Geomorphology, 2011, 129(1): 59-70 http://www.onacademic.com/detail/journal_1000035386678010_2fe5.html
|
[10] |
Yamazaki F, Kubo K, Tanabe R, et al. Damage Assessment and 3D Modeling by UAV Flights After the 2016 Kumamoto, Japan Earthquake[C]//IEEE International Geoscience and Remote Sensing Sym posium, Fort Worth, USA, 2017
|
[11] |
Tomás R, Li Z. Earth Observations for Geohazards: Present and Future Challenges[J]. Remote Sensing, 2017, 9(3): 194 doi: 10.3390/rs9030194
|
[12] |
Fan X, Xu Q, Alonso-Rodriguez A, et al. Successive Landsliding and Damming of the Jinsha River in Eastern Tibet, China: Prime Investigation, Early Warning, and Emergency Response[J]. Landslides, 2019, 16(5): 1 003-1 020 doi: 10.1007/s10346-019-01159-x
|
[13] |
Fan X, Xu Q, Scaringi G, et al. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China[J]. Landslides, 2017, 14(6): 2 129-2 146 doi: 10.1007/s10346-017-0907-7
|
[14] |
Roering J J, Mackey B H, Marshall J A, et al. "You Are HERE": Connecting the Dots with Airborne LiDAR for Geomorphic Fieldwork[J]. Geomorphology, 2013, 200: 172-183 doi: 10.1016/j.geomorph.2013.04.009
|
[15] |
McKean J, Roering J. Objective Landslide Detection and Surface Morphology Mapping Using High-Resolution Airborne Laser Altimetry[J]. Geomorphology, 2004, 57(3/4): 331-351 http://www.researchgate.net/profile/Josh_Roering/publication/222398914_McKean_J.__Roering_J._Objective_landslide_detection_and_surface_morphology_mapping_using_high-resolution_airborne_laser_altimetry._Geomorphology_57_331-351/links/09e41511bec79b1738000000.pdf
|
[16] |
Guzzetti F, Mondini A C, Cardinali M, et al. Landslide Inventory Maps: New Tools for an Old Problem [J]. Earth-Science Reviews, 2012, 112(1/2): 42-66 http://194.119.218.4/publications/repository/public/journals/2012/landslide-inventory-maps-new-tools-for-and-old-problem/@@download/file/Guzzetti-etal-LandslideInventoryMaps-NewToolsForOldProblem-ESR-2012.pdf
|
[17] |
Chigira M, Duan F, Yagi H, et al. Using an Airborne Laser Scanner for the Identification of Shallow Landslides and Susceptibility Assessment in an Area of Ignimbrite Overlain by Permeable Pyroclastics [J]. Landslides, 2004, 1(3): 203-209 doi: 10.1007/s10346-004-0029-x
|
[18] |
Comert R, Avdan U, Gorum T, et al. Mapping of Shallow Landslides with Object-Based Image Analysis from Unmanned Aerial Vehicle Data[J]. Engineering Geology, 2019, 260(July): 105264 http://www.sciencedirect.com/science/article/pii/S0013795219302261
|
[19] |
Chen R F, Chang K J, Angelier J, et al. Topographical Changes Revealed by High-Resolution Airborne LiDAR Data: The 1999 Tsaoling Landslide Induced by the Chi-Chi Earthquake[J]. Engineering Geology, 2006, 88(3/4): 160-172 http://140.112.114.62/bitstream/246246/85123/1/8.pdf
|
[20] |
Ardizzone F, Cardinali M, Galli M, et al. Identification and Mapping of Recent Rainfall-Induced Landslides Using Elevation Data Collected by Airborne Lidar[J]. Natural Hazards and Earth System Science, 2007, 7(6): 637-650 doi: 10.5194/nhess-7-637-2007
|
[21] |
Jaboyedoff M, Oppikofer T, Abellán A, et al. Use of LiDAR in Landslide Investigations: A Review [J]. Natural Hazards, 2012, 61(1): 5-28 doi: 10.1007/s11069-010-9634-2
|
[22] |
Bell R, Petschko H, Röhrs M, et al. Assessment of Landslide Age, Landslide Persistence and Human Impact Using Airborne Laser Scanning Digital Terrain Models[J]. Geografiska Annaler, Series A: Physical Geography, 2012, 94(1): 135-156 doi: 10.1111/j.1468-0459.2012.00454.x
|
[23] |
Li X, Cheng X, Chen W, et al. Identification of Forested Landslides Using LiDAR Data, Object-Based Image Analysis, and Machine Learning Algorithms[J]. Remote Sensing, 2015, 7(8): 9 705-9 726 doi: 10.3390/rs70809705
|
[24] |
董秀军, 许强, 佘金星, 等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报·信息科学版, 2020, 45(3): 432-441 doi: 10.13203/j.whugis20190076
Dong Xiujun, Xu Qiang, She Jinxing, et al. Preliminary Study on Interpretation of Geological Hazards in Jiuzhaigou Based on Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 432-441 doi: 10.13203/j.whugis20190076
|
[25] |
王绚, 范宣梅, 杨帆, 等. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报·信息科学版, 2020, 45(11): 1 771-1 781 doi: 10.13203/j.whugis20200044
Wang Xuan, Fan Xuanmei, Yang Fan, et al. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1 771-1 781 doi: 10.13203/j.whugis20200044
|
[26] |
李明辉, 郑万模, 石胜伟, 等. 丹巴县甲居滑坡复活机制及其稳定性分析[J]. 山地学报, 2008, 26(5): 577-582 doi: 10.3969/j.issn.1008-2786.2008.05.011
Li Minghui, Zheng Wanmo, Shi Shengwei, et al. The Revival Mechanism and Stability Analysis to Jiaju Landslide of Danba County in Sichuan Province [J]. Journal of Mountain Science, 2008, 26(5): 577-582 doi: 10.3969/j.issn.1008-2786.2008.05.011
|
[27] |
Chen N S, Li T C, Gao Y C. A Great Disastrous Debris Flow on 11 July 2003 in Shuikazi Valley, Danba County, Western Sichuan, China[J]. Landslides, 2005, 2(1): 71-74 doi: 10.1007/s10346-004-0041-1
|
[28] |
范宣梅, 许强, 黄润秋, 等. 丹巴县城后山滑坡锚固动态优化设计和信息化施工[J]. 岩石力学与工程学报, 2007, 26(S2): 4 139-4 146 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2080.htm
Fan Xuanmei, Xu Qiang, Huang Runqiu, et al. Dynamical Optimal Anchoring Design and Information Construction of Danba Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (S2): 4 139-4 146 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2080.htm
|
[29] |
Huang R. Some Catastrophic Landslides Since the Twentieth Century in the Southwest of China[J]. Landslides, 2009, 6(1): 69-81 doi: 10.1007/s10346-009-0142-y
|
[30] |
Chiba T, Kaneta S, Suzuki Y. Red Relief Image Map: New Visualization Method for Three Dimensional Data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(B2): 1 071-1 076 http://pdfs.semanticscholar.org/2d08/f3a9722fd63e57c48214c02575c69fd6129f.pdf
|
[31] |
Conrad O, Bechtel B, Bock M, et al. System for Automated Geoscientific Analyses (SAGA) v. 2. 1. 4 [J]. Geoscientific Model Development, 2015, 8(7): 1 991-2 007 doi: 10.5194/gmd-8-1991-2015
|
[32] |
晏长根, 祁生文, 伍法权, 等. 大渡河猴子岩水电站库尾段藏碉群斜坡巨型堆积体的成因分析[J]. 工程地质学报, 2006, 14(2): 159-164 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200602002.htm
Yan Changgen, Qi Shengwen, Wu Faquan, et al. Investigation of the Formation of Huge Quaternary Deposition Dadu River Near Houziyan Hydropower Dam[J]. Jounal of Engineering Geology, 2006, 14 (2): 159-164 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200602002.htm
|
[33] |
Görüm T. Landslide Recognition and Mapping in a Mixed Forest Environment from Airborne LiDAR Data[J]. Engineering Geology, 2019, 258: 105-155 http://www.sciencedirect.com/science/article/pii/S0013795219303539
|
[1] | LIU Xiaosha, DONG Xiujun, QIAN Jiren, GUO Chen, ZHAO Juncheng, ZHAN Jiaqi. Airborne LiDAR-based Debris Flow Material Sources Remote Sensing Recognition in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 400-410. DOI: 10.13203/j.whugis20210486 |
[2] | CHEN Bangsong, SIMA Jingsong, ZHAO Guangzu, DONG Xiujun, LEI Wenquan, CHEN Tingxuan, HE Qiulin. Optimal Point Density of Airborne LiDAR Data Collection for Hazards in Mountainous Areas[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240097 |
[3] | WU Fu, LIAO Zeyuan, HE Na, LIU Chang, WU Qiuju, MO Yingfei, PAN Xingyu, JIANG Yaojing, LI Chunling, HUANG Xin, WANG Yuxiang, DONG Xiujun. Airborne LiDAR for Geological Hazard Investigation in Mountainous Areas with Dense Vegetation on Point Cloud Density Optimization[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230386 |
[4] | WU Jie, CHENG Liang, CHU Sensen, RUAN Xiaoguang. Sky View Index-Urban Transportation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 706-717. DOI: 10.13203/j.whugis20200447 |
[5] | WANG Xuan, FAN Xuanmei, YANG Fan, DONG Xiujun. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1771-1781. DOI: 10.13203/j.whugis20200044 |
[6] | HAO Dalei, WEN Jianguang, XIAO Qing, YOU Dongqin, WU Xiaodan, LIN Xingwen, WU Shengbiao. An Accuracy Assessment Method for DEM Upscaling Based on Energy Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 570-577. DOI: 10.13203/j.whugis20170126 |
[7] | ZHOU Chunxia, DENG Fanghui, CHEN Yiming, WANG Zemin. Ice-flow Features in the Grove Mountains Area Using SAR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1428-1433. DOI: 10.13203/j.whugis20150258 |
[8] | RUI Xiaoping, LIU Zhenyu, SONG Xianfeng, JU Yiwen. A Fuzzy Inference Algorithm Suitable for Road Network Weight Analysis in Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 74-77. |
[9] | XIAO Jinqun, LI Zhiwei, WANG Changcheng, DING Xiaoli. DEM Extraction over Mountainous Area and Its Accuracy Analysis with Phase Compensation Based Differential Interferometry[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 334-338. |
[10] | Wu Liming. On the FFT Method of Terrain Corretion Computation in Rough Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 1992, 17(4): 34-40. |