GUO Chen, XU Qiang, DONG Xiujun, LIU Xiaosha, SHE Jinxing. Geohazard Recognition by Airborne LiDAR Technology in Complex Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547. DOI: 10.13203/j.whugis20210121
Citation: GUO Chen, XU Qiang, DONG Xiujun, LIU Xiaosha, SHE Jinxing. Geohazard Recognition by Airborne LiDAR Technology in Complex Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547. DOI: 10.13203/j.whugis20210121

Geohazard Recognition by Airborne LiDAR Technology in Complex Mountain Areas

Funds: 

The National Natural Science Foundation of China 41941019

National Innovation Research Group Science Fund 41521002

National Key Research and Development Program of China 2018YFC1505202

More Information
  • Author Bio:

    GUO Chen, PhD candidate, specializes in landslide early recognition by airborne remote sensing. E-mail: 978808082@qq.com

  • Corresponding author:

    XU Qiang, PhD, professor. E-mail: xq@cdut.edu.cn

  • Received Date: March 14, 2021
  • Published Date: October 04, 2021
  •   Objectives  Geohazard recognition and inventory mapping are the basis for geohazard susceptibility mapping, monitoring and early warning.However, it has been challenging to implement geohazard recognition and inventory mapping in mountainous areas with complex topography and vegetation cover though manual field survey or satellite remote sensing.Progress in the light detection and ranging(LiDAR) technology provides a new possibility for geohazard recognition in such areas.
      Methods  A high-resolution digital elevation model (DEM) was generated through the LiDAR point filtering and spatial interpolation, and combined with the DEM visualization method of sky view factor(SVF). Subsequently, the geohazard recognition work of Danba County and its surrounding area with a total area of 135 km2 was carried out.
      Results  A total of 146 geohazards are remotely mapped and classified as slides, rock fall, debris flows based on morphologic characteristics, it shows nearly one-third of the study area is dominated by geohazards. Field validation indicate the success rate of LiDAR-derived DEM in recognition and mapping landslides with higher precision and accuracy. On the basis of this, the spatial distribution characteristics and influencing factors of the geohazards were analyzed and it indicate these mapped geohazards lie along both sides of the river, and their spatial distributions are related highly to human engineering activities, such as road excavation and slope cutting.
      Conclusions  The research results provide references for geohazard recognition and mapping in mountainous areas with complex topography and vegetation cover and provide data support for the geohazard prevention and risk assessment for Danba county.
  • [1]
    Santangelo M, Cardinali M, Rossi M, et al. Remote Landslide Mapping Using a Laser Rangefinder Binocular and GPS[J]. Natural Hazards and Earth System Sciences, 2010, 10(12): 2 539-2 546 doi: 10.5194/nhess-10-2539-2010
    [2]
    Nichol J, Wong M S. Detection and Interpretation of Landslides Using Satellite Images[J]. Land Degradation and Development, 2005, 16(3): 243-255 doi: 10.1002/ldr.648
    [3]
    李为乐, 许强, 陆会燕, 等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报·信息科学版, 2019, 44(7): 1 043-1 053 doi: 10.13203/j.whugis20190090

    Li Weile, Xu Qiang, Lu Huiyan, et al. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment[J]. Geomatics and Information Science of Wuhan University, 2019, 44 (7): 1 043-1 053 doi: 10.13203/j.whugis20190090
    [4]
    Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198 doi: 10.1016/j.rse.2017.11.022
    [5]
    Schlögel R, Doubre C, Malet J P, et al. Landslide Deformation Monitoring with ALOS/PALSAR Imagery: A D-InSAR Geomorphological Interpretation Method[J]. Geomorphology, 2015, 231: 314-330 doi: 10.1016/j.geomorph.2014.11.031
    [6]
    Intrieri E, Raspini F, Fumagalli A, et al. The Maoxian Landslide as Seen from Space: Detecting Precursors of Failure with Sentinel-1 Data[J]. Landslides, 2018, 15(1): 123-133 doi: 10.1007/s10346-017-0915-7
    [7]
    Gorum T, Fan X, van Westen C J, et al. Distribution Pattern of Earthquake-Induced Landslides Triggered by the 12 May 2008 Wenchuan Earthquake [J]. Geomorphology, 2011, 133(3/4): 152-167 http://www.onacademic.com/detail/journal_1000035387115210_cb3f.html
    [8]
    Rossi G, Tanteri L, Tofani V, et al. Multitemporal UAV Surveys for Landslide Mapping and Characterization[J]. Landslides, 2018, 15(5): 1 045-1 052 doi: 10.1007/s10346-018-0978-0
    [9]
    Fiorucci F, Cardinali M, Carlà R, et al. Seasonal Landslide Mapping and Estimation of Landslide Mobilization Rates Using Aerial and Satellite Images [J]. Geomorphology, 2011, 129(1): 59-70 http://www.onacademic.com/detail/journal_1000035386678010_2fe5.html
    [10]
    Yamazaki F, Kubo K, Tanabe R, et al. Damage Assessment and 3D Modeling by UAV Flights After the 2016 Kumamoto, Japan Earthquake[C]//IEEE International Geoscience and Remote Sensing Sym posium, Fort Worth, USA, 2017
    [11]
    Tomás R, Li Z. Earth Observations for Geohazards: Present and Future Challenges[J]. Remote Sensing, 2017, 9(3): 194 doi: 10.3390/rs9030194
    [12]
    Fan X, Xu Q, Alonso-Rodriguez A, et al. Successive Landsliding and Damming of the Jinsha River in Eastern Tibet, China: Prime Investigation, Early Warning, and Emergency Response[J]. Landslides, 2019, 16(5): 1 003-1 020 doi: 10.1007/s10346-019-01159-x
    [13]
    Fan X, Xu Q, Scaringi G, et al. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China[J]. Landslides, 2017, 14(6): 2 129-2 146 doi: 10.1007/s10346-017-0907-7
    [14]
    Roering J J, Mackey B H, Marshall J A, et al. "You Are HERE": Connecting the Dots with Airborne LiDAR for Geomorphic Fieldwork[J]. Geomorphology, 2013, 200: 172-183 doi: 10.1016/j.geomorph.2013.04.009
    [15]
    [16]
    Guzzetti F, Mondini A C, Cardinali M, et al. Landslide Inventory Maps: New Tools for an Old Problem [J]. Earth-Science Reviews, 2012, 112(1/2): 42-66 http://194.119.218.4/publications/repository/public/journals/2012/landslide-inventory-maps-new-tools-for-and-old-problem/@@download/file/Guzzetti-etal-LandslideInventoryMaps-NewToolsForOldProblem-ESR-2012.pdf
    [17]
    Chigira M, Duan F, Yagi H, et al. Using an Airborne Laser Scanner for the Identification of Shallow Landslides and Susceptibility Assessment in an Area of Ignimbrite Overlain by Permeable Pyroclastics [J]. Landslides, 2004, 1(3): 203-209 doi: 10.1007/s10346-004-0029-x
    [18]
    Comert R, Avdan U, Gorum T, et al. Mapping of Shallow Landslides with Object-Based Image Analysis from Unmanned Aerial Vehicle Data[J]. Engineering Geology, 2019, 260(July): 105264 http://www.sciencedirect.com/science/article/pii/S0013795219302261
    [19]
    Chen R F, Chang K J, Angelier J, et al. Topographical Changes Revealed by High-Resolution Airborne LiDAR Data: The 1999 Tsaoling Landslide Induced by the Chi-Chi Earthquake[J]. Engineering Geology, 2006, 88(3/4): 160-172 http://140.112.114.62/bitstream/246246/85123/1/8.pdf
    [20]
    Ardizzone F, Cardinali M, Galli M, et al. Identification and Mapping of Recent Rainfall-Induced Landslides Using Elevation Data Collected by Airborne Lidar[J]. Natural Hazards and Earth System Science, 2007, 7(6): 637-650 doi: 10.5194/nhess-7-637-2007
    [21]
    Jaboyedoff M, Oppikofer T, Abellán A, et al. Use of LiDAR in Landslide Investigations: A Review [J]. Natural Hazards, 2012, 61(1): 5-28 doi: 10.1007/s11069-010-9634-2
    [22]
    Bell R, Petschko H, Röhrs M, et al. Assessment of Landslide Age, Landslide Persistence and Human Impact Using Airborne Laser Scanning Digital Terrain Models[J]. Geografiska Annaler, Series A: Physical Geography, 2012, 94(1): 135-156 doi: 10.1111/j.1468-0459.2012.00454.x
    [23]
    Li X, Cheng X, Chen W, et al. Identification of Forested Landslides Using LiDAR Data, Object-Based Image Analysis, and Machine Learning Algorithms[J]. Remote Sensing, 2015, 7(8): 9 705-9 726 doi: 10.3390/rs70809705
    [24]
    董秀军, 许强, 佘金星, 等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报·信息科学版, 2020, 45(3): 432-441 doi: 10.13203/j.whugis20190076

    Dong Xiujun, Xu Qiang, She Jinxing, et al. Preliminary Study on Interpretation of Geological Hazards in Jiuzhaigou Based on Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 432-441 doi: 10.13203/j.whugis20190076
    [25]
    王绚, 范宣梅, 杨帆, 等. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报·信息科学版, 2020, 45(11): 1 771-1 781 doi: 10.13203/j.whugis20200044

    Wang Xuan, Fan Xuanmei, Yang Fan, et al. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1 771-1 781 doi: 10.13203/j.whugis20200044
    [26]
    李明辉, 郑万模, 石胜伟, 等. 丹巴县甲居滑坡复活机制及其稳定性分析[J]. 山地学报, 2008, 26(5): 577-582 doi: 10.3969/j.issn.1008-2786.2008.05.011

    Li Minghui, Zheng Wanmo, Shi Shengwei, et al. The Revival Mechanism and Stability Analysis to Jiaju Landslide of Danba County in Sichuan Province [J]. Journal of Mountain Science, 2008, 26(5): 577-582 doi: 10.3969/j.issn.1008-2786.2008.05.011
    [27]
    Chen N S, Li T C, Gao Y C. A Great Disastrous Debris Flow on 11 July 2003 in Shuikazi Valley, Danba County, Western Sichuan, China[J]. Landslides, 2005, 2(1): 71-74 doi: 10.1007/s10346-004-0041-1
    [28]
    范宣梅, 许强, 黄润秋, 等. 丹巴县城后山滑坡锚固动态优化设计和信息化施工[J]. 岩石力学与工程学报, 2007, 26(S2): 4 139-4 146 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2080.htm

    Fan Xuanmei, Xu Qiang, Huang Runqiu, et al. Dynamical Optimal Anchoring Design and Information Construction of Danba Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (S2): 4 139-4 146 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2080.htm
    [29]
    Huang R. Some Catastrophic Landslides Since the Twentieth Century in the Southwest of China[J]. Landslides, 2009, 6(1): 69-81 doi: 10.1007/s10346-009-0142-y
    [30]
    Chiba T, Kaneta S, Suzuki Y. Red Relief Image Map: New Visualization Method for Three Dimensional Data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(B2): 1 071-1 076 http://pdfs.semanticscholar.org/2d08/f3a9722fd63e57c48214c02575c69fd6129f.pdf
    [31]
    Conrad O, Bechtel B, Bock M, et al. System for Automated Geoscientific Analyses (SAGA) v. 2. 1. 4 [J]. Geoscientific Model Development, 2015, 8(7): 1 991-2 007 doi: 10.5194/gmd-8-1991-2015
    [32]
    晏长根, 祁生文, 伍法权, 等. 大渡河猴子岩水电站库尾段藏碉群斜坡巨型堆积体的成因分析[J]. 工程地质学报, 2006, 14(2): 159-164 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200602002.htm

    Yan Changgen, Qi Shengwen, Wu Faquan, et al. Investigation of the Formation of Huge Quaternary Deposition Dadu River Near Houziyan Hydropower Dam[J]. Jounal of Engineering Geology, 2006, 14 (2): 159-164 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200602002.htm
    [33]
    Görüm T. Landslide Recognition and Mapping in a Mixed Forest Environment from Airborne LiDAR Data[J]. Engineering Geology, 2019, 258: 105-155 http://www.sciencedirect.com/science/article/pii/S0013795219303539
  • Related Articles

    [1]LIU Xiaosha, DONG Xiujun, QIAN Jiren, GUO Chen, ZHAO Juncheng, ZHAN Jiaqi. Airborne LiDAR-based Debris Flow Material Sources Remote Sensing Recognition in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 400-410. DOI: 10.13203/j.whugis20210486
    [2]CHEN Bangsong, SIMA Jingsong, ZHAO Guangzu, DONG Xiujun, LEI Wenquan, CHEN Tingxuan, HE Qiulin. Optimal Point Density of Airborne LiDAR Data Collection for Hazards in Mountainous Areas[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240097
    [3]WU Fu, LIAO Zeyuan, HE Na, LIU Chang, WU Qiuju, MO Yingfei, PAN Xingyu, JIANG Yaojing, LI Chunling, HUANG Xin, WANG Yuxiang, DONG Xiujun. Airborne LiDAR for Geological Hazard Investigation in Mountainous Areas with Dense Vegetation on Point Cloud Density Optimization[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230386
    [4]WU Jie, CHENG Liang, CHU Sensen, RUAN Xiaoguang. Sky View Index-Urban Transportation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 706-717. DOI: 10.13203/j.whugis20200447
    [5]WANG Xuan, FAN Xuanmei, YANG Fan, DONG Xiujun. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1771-1781. DOI: 10.13203/j.whugis20200044
    [6]HAO Dalei, WEN Jianguang, XIAO Qing, YOU Dongqin, WU Xiaodan, LIN Xingwen, WU Shengbiao. An Accuracy Assessment Method for DEM Upscaling Based on Energy Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 570-577. DOI: 10.13203/j.whugis20170126
    [7]ZHOU Chunxia, DENG Fanghui, CHEN Yiming, WANG Zemin. Ice-flow Features in the Grove Mountains Area Using SAR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1428-1433. DOI: 10.13203/j.whugis20150258
    [8]RUI Xiaoping, LIU Zhenyu, SONG Xianfeng, JU Yiwen. A Fuzzy Inference Algorithm Suitable for Road Network Weight Analysis in Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 74-77.
    [9]XIAO Jinqun, LI Zhiwei, WANG Changcheng, DING Xiaoli. DEM Extraction over Mountainous Area and Its Accuracy Analysis with Phase Compensation Based Differential Interferometry[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 334-338.
    [10]Wu Liming. On the FFT Method of Terrain Corretion Computation in Rough Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 1992, 17(4): 34-40.
  • Cited by

    Periodical cited type(37)

    1. 李泉林,李秀珍,龚俊豪,赵晨澄. 基于SBAS-InSAR技术的黄河上游库坝群段滑坡识别及监测分析. 灾害学. 2025(01): 199-206 .
    2. 段海澎,熊亮,刘旻昊,董秀军. 不同林分郁闭度与坡度下机载LiDAR最优点云密度. 人民长江. 2025(01): 125-131 .
    3. 周阳阳,孙中瑞,陈斌,徐锋良,张青峰. 基于实景三维模型的地质灾害隐患识别——以广东省上坪镇为例. 时空信息学报. 2024(01): 148-156 .
    4. 魏旭,彭志忠,刘兴臣,肖励之. 泸石高速公路沿线历史地震诱发滑坡遥感调查及发育分布规律. 地质科技通报. 2024(02): 386-396 .
    5. 付豪,李为乐,陆会燕,许强,董秀军,郭晨,谢毅,王栋,刘刚,马志刚. 基于“三查”体系的丹巴县滑坡隐患早期识别与监测. 武汉大学学报(信息科学版). 2024(05): 734-746 .
    6. 曹虎. 高植被覆盖下铁路隧道口危岩落石风险评估. 铁道标准设计. 2024(05): 122-129 .
    7. 王德富,李永鑫,任娟,范亚军,刘立,罗超. 联合无人机光学与机载LiDAR在高位滑坡要素识别中的应用:以川西汶川龙溪沟滑坡为例. 现代地质. 2024(02): 464-476 .
    8. 张林. 机载激光雷达在地形测绘中的运用. 工程技术研究. 2024(07): 98-100 .
    9. 周彬,谢洪波,文广超. 基于侵蚀循环理论的河南省降雨型地质灾害易发性分区. 华北水利水电大学学报(自然科学版). 2024(04): 92-101 .
    10. 孙晨曦,魏建新,巴比尔江·迪力夏提,孔祥魁. 基于多源低空遥感融合技术的露天矿实景三维重建及应用研究. 能源与环保. 2024(06): 160-165 .
    11. 高志良,解明礼,巨能攀,黄细超,彭涛,何朝阳. 堆积层滑坡多源遥感动态演变特征分析研究. 武汉大学学报(信息科学版). 2024(08): 1482-1491 .
    12. 邱春霞,刘晓宏,李豆,张佳淼,李朋飞. 机载LiDAR和模糊推理系统在黄土高原土壤侵蚀监测中的应用. 干旱区研究. 2024(08): 1331-1342 .
    13. 陈刚,郝社锋,蒋波,喻永祥,车增光,刘汉湖,杨容浩. 基于机载LiDAR技术植被茂密区小型滑坡识别与评价. 自然资源遥感. 2024(03): 196-205 .
    14. 王峰,齐云龙,郭晨. 四川省会东县崩滑灾害孕灾地质条件分析. 地质与资源. 2024(05): 707-715 .
    15. 周志涛. 基于InSAR技术的蓬江区地面沉降成因分析. 河南科技. 2024(21): 93-96 .
    16. 刘金沧,王欢欢,李云,杨婷. 基于支持向量机的华南斜坡类地质灾害易发性评价:以肇庆市怀集县为例. 时空信息学报. 2024(06): 785-794 .
    17. 闫烨琛,席雪萍,于向吉,袁婷婷,高学飞,齐超. 机载激光雷达在困难立地区大比例尺地形测绘中的应用研究. 科技创新与应用. 2023(06): 108-111 .
    18. 郑鹏,魏星灿,李宁,李强,陈江攀. 无人机机载LiDAR技术在抽水蓄能电站库区岩溶识别中的应用. 测绘通报. 2023(04): 121-127 .
    19. 何柯璐,汤伏全,李振洪. 基于地形特征的采煤沉陷盆地构建与水平移动信息智能提取方法. 武汉大学学报(信息科学版). 2023(05): 717-729 .
    20. 窦杰,向子林,许强,郑鹏麟,王协康,苏爱军,刘军旗,罗万祺. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学. 2023(05): 1657-1674 .
    21. 杨在松,甘淑,袁希平,高莎,罗为东,和文斌. 无人机成像点云与LiDAR点云用于DEM构建精度对比分析. 城市勘测. 2023(04): 78-83 .
    22. 李艳,伍陶,屈仁飞,梁晓强. 机载激光雷达技术在水电站地质灾害解译中的应用. 成都航空职业技术学院学报. 2023(03): 58-61+65 .
    23. 余晓玫,高飞,李文娟,谭祥,王海江. 面向车联网的激光雷达通信信号波形模式识别. 激光杂志. 2023(09): 166-171 .
    24. 鲍国,张书毕,陈强,郑有雷,陈春. 基于地面LiDAR的建筑物精细化三维重建及精度分析. 金属矿山. 2023(09): 140-144 .
    25. 张一希,赵程,李青春,陈思娇. 四川盐源县桃子乡“7.19”特大滑坡特征与成因机理研究. 水利水电技术(中英文). 2023(11): 181-191 .
    26. 周昊,毛庆洲,胡雪晴,魏伊可,张旭. 高转速扫描激光雷达中探测器偏离焦平面的应用. 光学精密工程. 2023(21): 3077-3087 .
    27. 朱江,杨胜雄,黄泽磊,王宁,曲金才. 空地一体化技术在地质灾害调查评价中的应用——以粤北连州镇为例. 矿产勘查. 2023(12): 2426-2433 .
    28. 许强,陆会燕,李为乐,董秀军,郭晨. 滑坡隐患类型与对应识别方法. 武汉大学学报(信息科学版). 2022(03): 377-387 .
    29. 刘春,贾守军,吴杭彬,黄炜,郑宁,艾克然木·艾克拜尔. 点云场景认知模式——泛化点云. 测绘学报. 2022(04): 556-567 .
    30. 赵立都,张双成,向中富,马下平,周银,胡川,冯红刚,陈茂霖,蒋俊秋. 地面三维激光扫描点云应用于滑坡监测中基准统一研究. 灾害学. 2022(02): 84-88 .
    31. 常宏. 三峡库区潜在顺层岩质滑坡识别的宏观判据. 华南地质. 2022(02): 265-272 .
    32. 许强,朱星,李为乐,董秀军,戴可人,蒋亚楠,陆会燕,郭晨. “天-空-地”协同滑坡监测技术进展. 测绘学报. 2022(07): 1416-1436 .
    33. 党杰,董吉,何松标,范宣梅. 机载LiDAR与地面三维激光扫描在贵州水城独家寨崩塌地质灾害风险调查中的应用. 中国地质灾害与防治学报. 2022(04): 106-113 .
    34. 刘立,陈宏宇,刘娟,董先敏,王德富. 地质灾害隐患三维一张图构建方法. 测绘工程. 2022(05): 46-53+60 .
    35. 王青,耿丽. 基于FPGA的激光雷达多通道数据实时采集系统. 激光杂志. 2022(11): 74-77 .
    36. 贺鹏,颜瑜严,文艳,马志刚,焦其松,郭兆成,莫悠. 机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用. 自然资源遥感. 2022(04): 307-316 .
    37. 巨淑君,高志良,高强,彭涛,刘恒. 吉牛水电站库区地质灾害调查新技术应用. 四川水力发电. 2021(04): 63-67+71 .

    Other cited types(24)

Catalog

    Article views (1799) PDF downloads (271) Cited by(61)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return