GUO Zehua, WU Yunlong, XIAO Yun, HU Minzhang. Reconstruction Method of Satellite Gravity Gradient Measurement Angular Velocity by Combining Star Tracker Quaternion[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1336-1344. DOI: 10.13203/j.whugis20200595
Citation: GUO Zehua, WU Yunlong, XIAO Yun, HU Minzhang. Reconstruction Method of Satellite Gravity Gradient Measurement Angular Velocity by Combining Star Tracker Quaternion[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1336-1344. DOI: 10.13203/j.whugis20200595

Reconstruction Method of Satellite Gravity Gradient Measurement Angular Velocity by Combining Star Tracker Quaternion

Funds: 

The National Key Research and Development Program of China 2018YFC1503503-1

the National Natural Science Foundation of China 41931074

the National Natural Science Foundation of China 41974096

More Information
  • Author Bio:

    GUO Zehua, postgraduate, specializes in gravity gradient satellite data processing. E?mail: guozehua_geo@163.com

  • Corresponding author:

    WU Yunlong, PhD, professor. E-mail: yunlongwu@gmail.com

  • Received Date: January 03, 2021
  • Published Date: September 17, 2021
  •   Objectives  In order to calculate the high precision gravity gradient in level 1b (L1b) data processing of gravity field and steady-state ocean circulation explorer(GOCE)satellite, it is necessary to accurately measure the satellite attitude angular velocity. In the coordinate system transformation of the attitude data of astrology, the low precision angular velocity components of a single astrology instrument will transmit the noise to other angular velocity components, which will affect the calculation accuracy of the whole gravity gradient.
      Methods  In this paper, based on the noise characteristics of the astrological instrument, the weighted matrix of the noise distribution on each axis of the astrological instrument is constructed, and the optimal attitude quaternion is solved jointly for the attitude quaternion of two or more astrological instruments, so as to provide accurate attitude control for subsequent angular velocity recovery.
      Results  Compared with the single astro-meter calculation method, the accuracy of the optimal attitude angular velocity components wy and wz obtained by the combination of multiple astro-meters can reach about 1 order of magnitude higher within 10-100 mHz, and the noise level is up to 10-6 rad/s, which can effectively suppress the noise propagation caused by the low precision angular velocity components in coordinate system transformation.
      Conclusions  The results show that the satellite attitude angular velocity calculated by the combination of multiple astrological instruments can be significantly improved in the whole power spectral density, the power spectral density of gravity gradient trace values calculated by the combined method of multiple astrologers is also significantly improved compared with the single astrologer method.
  • [1]
    程鹏飞, 文汉江, 刘焕玲, 等. 卫星大地测量学的研究现状及发展趋势[J]. 武汉大学学报·信息科学版, 2019, 44(1): 48-54 doi: 10.13203/j.whugis20180356

    Cheng Pengfei, Wen Hanjiang, Liu Huanling, et al. Research Situation and Future Development of Satellite Geodesy [J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 48-54 doi: 10.13203/j.whugis20180356
    [2]
    Baur O, Bock H, Höck E, et al. Comparison of GOCE-GPS Gravity Fields Derived by Different Approaches[J]. Journal of Geodesy, 2014, 88(10): 959-973 doi: 10.1007/s00190-014-0736-6
    [3]
    吴云龙. GOCE卫星重力梯度测量数据的预处理研究[D]. 武汉: 武汉大学, 2010

    Wu Yunlong. Study on Pre-Processing of GOCE Satellite Gravity Gradiometry Data[D]. Wuhan: Wuhan University, 2010
    [4]
    周泽兵, 白彦峥, 祝竺, 等. 卫星重力测量中加速度计在轨参数校准方法研究[J]. 中国空间科学技术, 2009, 29(6): 74-80 doi: 10.3321/j.issn:1000-758X.2009.06.012

    Zhou Zebing, Bai Yanzheng, Zhu Zhu, et al. In-Orbit Calibration Methods of Accelerometer Parameters on Satellite-Borne Gravimetry [J]. Chinese Space Science and Technology, 2009, 29(6): 74-80 doi: 10.3321/j.issn:1000-758X.2009.06.012
    [5]
    Rummel R, Yi W Y, Stummer C. GOCE Gravitational Gradiometry[J]. Journal of Geodesy, 2011, 85(11): 777-790 doi: 10.1007/s00190-011-0500-0
    [6]
    Frommknecht B, Lamarre D, Meloni M, et al. GOCE Level 1b Data Processing[J]. Journal of Geodesy, 2011, 85(11): 759-775 doi: 10.1007/s00190-011-0497-4
    [7]
    Siemes C, Rexer M, Schlicht A, et al. GOCE Gradiometer Data Calibration[J]. Journal of Geodesy, 2019, 93(9): 1 603-1 630 doi: 10.1007/s00190-019-01271-9
    [8]
    Siemes C, Haagmans R, Kern M, et al. Monitoring GOCE Gradiometer Calibration Parameters Using Accelerometer and Star Sensor Data: Methodology and First Results[J]. Journal of Geodesy, 2012, 86(8): 629-645 doi: 10.1007/s00190-012-0545-8
    [9]
    Rispens S, Bouman J. Calibrating the GOCE Accelerations with Star Sensor Data and a Global Gravity Field Model[J]. Journal of Geodesy, 2009, 83(8): 737-749 doi: 10.1007/s00190-008-0290-1
    [10]
    Stummer C, Fecher T, Pail R. Alternative Method for Angular Rate Determination Within the GOCE Gradiometer Processing[J]. Journal of Geodesy, 2011, 85(9): 585-596 doi: 10.1007/s00190-011-0461-3
    [11]
    Siemes C, Rexer M, Haagmans R. GOCE Star Tracker Attitude Quaternion Calibration and Combination[J]. Advances in Space Research, 2019, 63(3): 1 133-1 146 http://www.sciencedirect.com/science/article/pii/S0273117718307993
    [12]
    Bandikova T, Flury J. Improvement of the GRACE Star Camera Data Based on the Revision of the Com bination Method[J]. Advances in Space Research, 2014, 54(9): 1 818-1 827 doi: 10.1016/j.asr.2014.07.004
    [13]
    Wu S C, Kruizinga G, Bertiger W. Algorithm Theoretical Basis Document for GRACE Level-1B Data Processing v1. 2[R]. Los Angeles, USA: Jet Propulsion Laboratory, 2006
    [14]
    Cesare C, Catastini G. Gradiometer On-Orbit Calibration Procedure Analysis[R]. Paris, France: European Space Agency, 2008
    [15]
    Cesare C, Sechi G, Catastini G. Gradiometer Ground Processing Algorithms Documentation[R]. Paris, France: European Space Agency, 2008
    [16]
    杨宇飞, 杨元喜, 徐君毅, 等. 低轨卫星对导航卫星星座轨道测定的增强作用[J]. 武汉大学学报·信息科学版, 2020, 45(1): 46-52 doi: 10.13203/j.whugis20180215

    Yang Yufei, Yang Yuanxi, Xu Junyi, et al. Navigation Satellites Orbit Determination with the Enhancement of Low Earth Orbit Satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 46-52 doi: 10.13203/j.whugis20180215
    [17]
    吴汤婷, 徐新禹, 魏辉, 等. 一种计算GOCE卫星加速度的实用算法[J]. 测绘地理信息, 2017, 42(2): 8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201702003.htm

    Wu Tangting, Xu Xinyu, Wei Hui, et al. An Applied Algorithm to Calculate the Acceleration of GOCE Satellite[J]. Journal of Geomatics, 2017, 42(2): 8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201702003.htm
    [18]
    Gruber T, Rummel R, Abrikosov O, et al. GOCE Level 2 Product Data Handbook[R]. Novotel, Luxembourg: The GOCE High Level Processing Facility, 2010
    [19]
    Rummel R. Satellite Gradiometry[M]// Mathematical and Numerical Techniques in Physical Geodesy. Berlin, Heidelberg: Springer-Verlag, 1986: 317-363
    [20]
    邹贤才, 李建成, 衷路萍, 等. 动力法校准GRACE星载加速度计[J]. 武汉大学学报·信息科学版, 2015, 40(3): 357-360 http://ch.whu.edu.cn/article/id/3210

    Zou Xiancai, Li Jiancheng, Zhong Luping, et al. Calibration of the Accelerometers Onboard GRACE with the Dynamic Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 357-360 http://ch.whu.edu.cn/article/id/3210
    [21]
    陈俊勇. 地球重力场、重力、重力梯度在三维直角坐标系中的表达式[J]. 武汉大学学报·信息科学版, 2004, 29(5): 377-379 doi: 10.13203/j.whugis2004.05.001

    Chen Junyong. Expressions of Earth Gravity Field, Gravity and Gravity Gradient in 3D Cartesian Coordinates System[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 377-379 doi: 10.13203/j.whugis2004.05.001
    [22]
    Rispens S, Bouman J. Calibrating the GOCE Accelerations with Star Sensor Data and a Global Gravity Field Model[J]. Journal of Geodesy, 2009, 83(8): 737-749 doi: 10.1007/s00190-008-0290-1
    [23]
    Frommknecht B. Integrated Sensor Analysis of the GRACE Mission[R]. München, Germany: Verlag der Bayerischen Akademieder Wissenschaften, 2008
    [24]
    Romans L. Optimal Combination of Quaternions From Multiple Star Cameras[R]. Los Angeles, USA: Jet Propulsion Laboratory, 2003
    [25]
    Siemes C. GOCE Level 1b Gravity Gradient Processing Algorithms[R]. Paris, France: European Space Agency, 2018
    [26]
    章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998

    Zhang Renwei. Dynamics and Control of Satellite Orbital Attitude[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 1998
    [27]
    SERCO/DATAMAT Consortium. GOCE L1b Products User Handbook[R]. Paris, France: European Space Agency, 2006
    [28]
    Welch P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms[J]. IEEE Transactions on Audio and Eletroacoustics, 1967, 15(2): 70-73 doi: 10.1109/TAU.1967.1161901
    [29]
    周晓青. 探测地球重力场的卫星重力梯度指标研究与分析[D]. 武汉: 武汉大学, 2016

    Zhou Xiaoqing. Research and Analysis of Satellite Gravity Gradiometry Indicator for Exploring the Earth's Gravity Field[D]. Wuhan: Wuhan University, 2016
    [30]
    Rummel R, Yi W Y, Stummer C. GOCE Gravitational Gradiometry[J]. Journal of Geodesy, 2011, 85(11): 777-790 doi: 10.1007/s00190-011-0500-0
    [31]
    Wan X Y, Yu J H. Derivation of the Radial Gradient of the Gravity Based on Non-Full Tensor Satellite Gravity Gradients[J]. Journal of Geodynamics, 2013, 66: 59-64 doi: 10.1016/j.jog.2013.02.005
  • Cited by

    Periodical cited type(3)

    1. 石伟,胡玮,冯雪东,贾昊东. 乌加河地震台JCZ-1地震计与PET重力仪地震波记录特征分析. 地震地磁观测与研究. 2023(03): 133-138 .
    2. 李航,陈晓东,徐建桥,孙和平,张苗苗,韩宇飞. 同址观测重力仪与地震仪地震频段噪声水平比较. 大地测量与地球动力学. 2020(08): 843-848 .
    3. 田桂娥,张建. 基于武汉超导数据的非潮汐信息信号提取方法研究. 河北师范大学学报(自然科学版). 2019(06): 497-503 .

    Other cited types(2)

Catalog

    Article views (1119) PDF downloads (97) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return