GUO Fei, WU Weiwang, ZHANG Xiaohong, LIU Wanke. Realization and Precision Analysis of Real-Time Precise Point Positioning with Android Smartphones[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1053-1062. DOI: 10.13203/j.whugis20200527
Citation: GUO Fei, WU Weiwang, ZHANG Xiaohong, LIU Wanke. Realization and Precision Analysis of Real-Time Precise Point Positioning with Android Smartphones[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1053-1062. DOI: 10.13203/j.whugis20200527

Realization and Precision Analysis of Real-Time Precise Point Positioning with Android Smartphones

Funds: 

The National Key Research and Development Program of China 2017YFB0503402

The National Key Research and Development Program of China 2016YFB0501803

the National Natural Science Foundation of China 41774034

Wuhan Science and Technology Project 2020010601012185

Fundamental Research Funds for the Central Universities 2042019kf0214

More Information
  • Author Bio:

    GUO Fei, PhD, professor, specializes in GNSS precise positioning and its application. E-mail: fguo@sgg.whu.edu.cn

  • Received Date: October 28, 2020
  • Published Date: July 09, 2021
  •   Objectives  With the popularization of smartphones and the evolution of global navigation satellite systems (GNSS), navigation contributes as an indispensable function for smartphones, and the demand of high-precision positioning for mass-market smartphones is becoming higher. From 2016, developers can obtain GNSS raw observations through Google Android application programming interface (API). Android 9.0 and above versions, provide the option to turn off the duty cycle, which makes it possible for smartphones to conduct precise point positioning (PPP).
      Methods  This paper conducts quality analysis of the GNSS observations for several common-used dual-frequency smartphones, Huawei Mate 20/30 and Xiaomi 8, and propose a set of quality control schemes that is suitable for smartphone PPP. Gross errors can be removed by data detection according to satellite elevation, signal-to-noise ratio, pre-residuals, etc., while cycle slips can be detected by the accumulated delta range state (ADRS) identifiers as well as the time difference carrier phase (TDCP) observations. A real-time PPP application based on Android platform was developed. It supports for singe- and dual-frequency, real-time and post-processing PPP. To verify the performance of PPP with smartphones, several field experiments were performed with different smartphones in different scenarios.
      Results  Field results show that: (1) The pseudorange quality of Xiaomi 8 and Huawei Mate 20 are similar, while the carrier phase quality of Huawei Mate 20/30 is significantly worse than Xiaomi 8. (2) The ADRS identifier of Xiaomi 8 can better identify the cycle slip, while it is difficult for Huawei Mate 20/30 to directly determine the cycle slips through the ADRS identifier. By combining the ADRS and TDCP can detect most of cycle slips. (3) The positioning accuracy of single-frequency PPP for Xiaomi 8 and Huawei Mate 20/30 reach 0.5-0.6 m in horizontal, and 1.0-2.0 m in vertical. The positioning accuracy of dual-frequency PPP is better than that of single-frequency PPP after convergence, especially in the vertical direction. (4) For the real-time and post-processing PPP, they both have a similar positioning accuracy in the horizontal components, while the positioning accuracy of post-processing PPP in the vertical direction is higher than that of real-time PPP by 20%-40%.
      Conclusions  An accuracy of a few decimeters can be achieved for real-time PPP with Android smartphones. Different from geodetic GNSS receivers, the widely-used smartphones use low-cost linearly-polarized antennas. In addition, smartphones are often used in urban complex scenarios, thus the GNSS data they collect have more gross errors, cycle slips and multipath effects. Further study should focus on the multipath mitigation, multi-frequency and multi-GNSS combination, and fusion with other sensors such as gyroscopes, magnetometers, barometers, bluetooth, Wi-Fi, etc. to realize continuous and seamless positioning both indoor and outdoor.
  • [1]
    Zhang X, Tao X, Zhu F, et al. Quality Assessment of GNSS Observations from an Android N Smartphone and Positioning Performance Analysis Using Time-Differenced Filtering Approach[J]. GPS Solutions, 2018, 22(3): 70 doi: 10.1007/s10291-018-0736-8
    [2]
    刘万科, 史翔, 朱锋, 等. 谷歌Nexus 9智能终端原始GNSS观测值的质量分析[J]. 武汉大学学报·信息科学版, 2019, 44(12): 1 749-1 756 doi: 10.13203/j.whugis20180141

    Liu Wanke, Shi Xiang, Zhu Feng, et al. Quality Analysis of Raw GNSS Observation of Google Nexus 9 Smart Tablet Terminal[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1 749-1 756 doi: 10.13203/j.whugis20180141
    [3]
    史翔. 基于智能手机GNSS观测值的连续平滑定位算法[D]. 武汉: 武汉大学, 2019

    Shi Xiang. Continuous Smoothing Positioning Algorithm Based on GNSS Observations of Smartphones[D]. Wuhan: Wuhan University, 2019
    [4]
    Aggrey J, Bisnath S, Naciri N, et al. Use of PPP Processing for Next-generation Smartphone GNSS Chips: Key Benefits and Challenges[C]. The 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, Florida, USA, 2019
    [5]
    Chen B, Gao C, Liu Y, et al. Real-Time Precise Point Positioning with a Xiaomi Mi 8 Android Smartphone[J]. Sensors, 2019, 19(12): 2 835 doi: 10.3390/s19122835
    [6]
    Håkansson M. Characterization of GNSS Observations from a Nexus 9 Android Tablet[J]. GPS Solutions, 2019, 23(1): 21 doi: 10.1007/s10291-018-0818-7
    [7]
    Paziewski J, Sieradzki R, Baryla R. Signal Characterization and Assessment of Code GNSS Positioning with Low-Power Consumption Smartphones[J]. GPS Solutions, 2019, 23(4): 98 doi: 10.1007/s10291-019-0892-5
    [8]
    Riley S, Lentz W, Clare A. On the Path to Precision-Observations with Android GNSS Observables[C]. The 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, USA, 2017
    [9]
    Pirazzi G, Mazzoni A, Biagi L, et al. Preliminary Performance Analysis with a GPS+Galileo Enabled Chipset Embedded in a Smartphone[C]. The 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, USA, 2017
    [10]
    Liu W, Shi X, Zhu F, et al. Quality Analysis of Multi-GNSS Raw Observations and a Velocity-Aided Positioning Approach Based on Smartphones [J]. Advances in Space Research, 2019, 63(8): 2 358-2 377 doi: 10.1016/j.asr.2019.01.004
    [11]
    Robustelli U, Baiocchi V, Pugliano G. Assessment of Dual Frequency GNSS Observations from a Xiaomi Mi 8 Android Smartphone and Positioning Performance Analysis[J]. Electronics, 2019, 8(1): 91 doi: 10.3390/electronics8010091
    [12]
    Fortunato M, Critchley-Marrows J, Siutkowska M, et al. Enabling High Accuracy Dynamic Applications in Urban Environments Using PPP and RTK on Android Multi-frequency and Multi-GNSS Smartphones[C]. European Navigation Conference (ENC), Warsaw, Poland, 2019
    [13]
    Elmezayen A G, El-Rabbany A. Precise Point Positioning Using World's First Dual-Frequency GPS/Galileo Smartphone[J]. Sensors, 2019, 19(11): 2 593 doi: 10.3390/s19112593
    [14]
    Wu Q, Sun M, Zhou C, et al. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone[J]. Sensors, 2019, 19(9): 2 189 doi: 10.3390/s19092189
    [15]
    郭斐. GPS精密单点定位质量控制与分析的相关理论和方法研究[D]. 武汉: 武汉大学, 2013

    Guo Fei. Theory and Method of Quality Control and Quality Analysis for Precise Point Positioning[D]. Wuhan: Wuhan University, 2013
    [16]
    张小红, 郭斐, 李盼, 等. GNSS精密单点定位中的实时质量控制[J]. 武汉大学学报·信息科学版, 2012, 37(8): 940-944 http://ch.whu.edu.cn/article/id/281

    Zhang Xiaohong, Guo Fei, Li Pan, et al. Real-Time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944 http://ch.whu.edu.cn/article/id/281
    [17]
    邹璇, 李宗楠, 陈亮, 等. 一种历元间差分单站单频周跳探测与修复方法[J]. 武汉大学学报·信息科学版, 2017, 42(10): 1 406-1 410 doi: 10.13203/j.whugis20150805

    Zou Xuan, Li Zongnan, Chen Liang, et al. A New Cycle Slip Detection and Repair Method Based on Epoch Difference for a Single-Frequency GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1 406-1 410 doi: 10.13203/j.whugis20150805
  • Related Articles

    [1]ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085
    [2]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [3]KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856
    [4]ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836.
    [5]ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944.
    [6]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [7]HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536.
    [8]CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296.
    [9]DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722.
    [10]ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130.
  • Cited by

    Periodical cited type(28)

    1. 李岚,朱锋,刘万科,张小红. 城市分类场景的GNSS伪距随机模型构建及其定位性能分析. 武汉大学学报(信息科学版). 2025(03): 545-553 .
    2. 苑晓峥,徐爱功,高猛,祝会忠. 基于低成本终端抗差速度约束差分定位算法. 大地测量与地球动力学. 2024(01): 27-34 .
    3. 曲利红,李俊芹. 通用智能技术路线下的人机传播应用. 电视技术. 2024(03): 176-179 .
    4. 刘一,刘敏,边少锋,翟国君,周威. 北斗低成本接收机单频PPP海上定位性能分析. 海洋测绘. 2024(03): 68-72+82 .
    5. 张宝,吴泓正,邸越超,张传定. Android智能手机GNSS定位研究进展. 测绘科学. 2024(05): 1-14 .
    6. 侯雪,张献志,叶远斌. 基于GDCORS的北斗终端高精度定位算法实现及性能分析. 地理空间信息. 2024(08): 72-75 .
    7. 孙俊锋,穆宏波,于先文,廖鹏,吴焱泽. 顾及系统误差影响的智能手机GNSS观测值质量分析. 测绘工程. 2024(05): 43-49 .
    8. 孙俊锋,吴焱泽,于先文,廖鹏,叶嘉宁,曹嘉瑞. 基于北斗的智能手机内河航道高精度定位软件研发. 现代测绘. 2024(03): 13-17 .
    9. 尹昊华,雷博,连宏亮,徐邦岁,曾翔强. 基于安卓智能手机的高精度定位系统研发及测试. 国土资源导刊. 2024(03): 9-17 .
    10. 祝会忠,孙沐凡,李军. GNSS低成本智能终端抗差自适应差分定位算法. 导航定位学报. 2024(06): 10-19 .
    11. 王瑞光,王中元,胡超,王阳阳,刘冰雨. 智能手机BDS-3/GPS数据质量及SPP性能分析. 大地测量与地球动力学. 2023(02): 168-172 .
    12. 孟庆庆,郭德普,胡洁,薄伟伟. 移动GIS在黄委直管河道确权划界中的应用. 水利信息化. 2023(02): 44-49 .
    13. 徐彦田,刘巍峰,李玉星,姜鼎璇. BDS/GPS/GAL智能手机RTK动态定位算法. 无线电工程. 2023(05): 1061-1067 .
    14. 王甫红,栾梦杰,程雨欣,祝浩祈,赵广越,张万威. 城市环境下智能手机车载GNSS/MEMS IMU紧组合定位算法. 武汉大学学报(信息科学版). 2023(07): 1106-1116 .
    15. 郑东,汪梦月,杨中皇. SM3国密算法在Android内核的汇编语言快速实现. 西安邮电大学学报. 2023(03): 57-62 .
    16. 逯遥,聂志喜,王振杰,徐晓飞,张远帆,王翔. 单/双频混合数据的Android手机精密单点定位方法. 测绘科学. 2023(08): 64-71+129 .
    17. 傅鑫榕,王甫红,郭磊,栾梦杰,祝浩祈. 不同电离层模型对智能手机实时PPP精度的影响分析. 测绘地理信息. 2023(06): 26-31 .
    18. 葛在宸,王明华. 基于智能手机GNSS伪距定位的运动距离和速度确定. 江西科学. 2023(06): 1124-1130 .
    19. 邱树素,顾桢,章怿钦,叶俊华. 基于手机内置传感器的相对高程模型. 北京测绘. 2023(12): 1676-1682 .
    20. 董少敏,辛宪会,刘杰,陈文哲,卢为选. 便携式GNSS接收机集成方案及其定位精度分析. 海洋测绘. 2022(03): 56-60 .
    21. 甘露,王志斌,张少波,韩明敏,陈攀,黄威翰. Android智能手机间相对定位性能分析. 测绘工程. 2022(05): 54-60 .
    22. 李阿红. 基于混合神经网络的Android软件缺陷精准预测研究. 自动化与仪器仪表. 2022(08): 33-36+41 .
    23. 张小红,陶贤露,王颖喆,刘万科,朱锋. 城市场景智能手机GNSS/MEMS融合车载高精度定位. 武汉大学学报(信息科学版). 2022(10): 1740-1749 .
    24. 王怡欣,刘晖,钱闯,范潇云. 一种基于智能手机的实时高精度定位系统开发与车载应用测试. 测绘通报. 2022(10): 56-61 .
    25. 曾树林,匡翠林. 智能手机RTK定位软件实现及应用试验. 全球定位系统. 2022(05): 72-80 .
    26. 祝会忠,李骏鹏,李军. 智能手机GNSS多系统多频实时动态定位方法. 测绘科学. 2022(09): 8-19 .
    27. 舒宝,义琛,王利,许豪,田云青. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析. 大地测量与地球动力学. 2022(12): 1222-1226 .
    28. 吴文坛,秘金钟,谷守周. 智能手机广域差分实时定位分析. 测绘科学. 2022(10): 39-44 .

    Other cited types(27)

Catalog

    Article views (1831) PDF downloads (301) Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return