CHEN Yimin, LI Xia. Applications and New Trends of Machine Learning in Urban Simulation Research[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1884-1889. DOI: 10.13203/j.whugis20200423
Citation: CHEN Yimin, LI Xia. Applications and New Trends of Machine Learning in Urban Simulation Research[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1884-1889. DOI: 10.13203/j.whugis20200423

Applications and New Trends of Machine Learning in Urban Simulation Research

Funds: 

The National Key Research and Development Program of China 2019YFA0607201

the National Natural Science Foundation of China 41871306

More Information
  • Author Bio:

    CHEN Yimin, PhD, associate professor, specializes in urban computation and scenario simulation. E-mail:chenym49@mail.sysu.edu.cn

  • Corresponding author:

    LI Xia, PhD, professor. E-mail:lixia@geo.ecnu.edu.cn

  • Received Date: August 16, 2020
  • Published Date: December 04, 2020
  • Urban simulation research originated between the 1980s and 1990s. Today urban simulation has become a new paradigm of urban research, which is an important outcome of computational thinking in urban research. Urban simulation methods are usually based on cellular automata (CA) and machine learning. A series of urban CA models have been developed to simulate complex urban evolution processes and associated multi-scenario analysis. This paper reviews the origin and progress of urban simulation research. With the discussion of urban CA's general structure, we explains the necessity and feasibility of machine learning methods to support urban simulation. Furthermore, we reviews the integration of machine learning and CA in urban research, and also discusses its new trends and emerging challenges.
  • [1]
    Openshaw S, Openshaw C.Artificial Intelligence in Geography[M].New Jersey:John Wiley & Sons, 1997
    [2]
    Clarke K, Gaydos L.Loose-coupling a Cellular Automaton Model and GIS: Long-term Urban Growth Prediction for San Francisco and Washington/Baltimore[J].International Journal of Geographical Information Science, 1998, 12(7): 699-714 doi: 10.1080/136588198241617
    [3]
    Li X, Yeh A G O.Modelling Sustainable Urban Development by the Integration of Constrained Cellular Automata and GIS[J].International Journal of Geographical Information Science, 2000, 14(2): 131-152 doi: 10.1080/136588100240886
    [4]
    Wu F.Calibration of Stochastic Cellular Automata: The Application to Rural-Urban Land Conversions[J].International Journal of Geographical Information Science, 2002, 16(8): 795-818 doi: 10.1080/13658810210157769
    [5]
    Brown D G, Page S, Riolo R, et al.Path Dependence and the Validation of Agent-Based Spatial Models of Land Use[J].International Journal of Geographical Information Science, 2005, 19(2): 153-174 doi: 10.1080/13658810410001713399
    [6]
    Clarke K C. Why Simulate Cities?[J].GeoJournal, 2014, 79(2): 129-136 doi: 10.1007/s10708-013-9499-5
    [7]
    Smith Ⅲ A R. Cellular Automata Complexity Trade-Offs[J].Information and Control, 1971, 18(5): 466-482 doi: 10.1016/S0019-9958(71)90501-8
    [8]
    White R, Engelen G. Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns[J].Environment and Planning A, 1993, 25: 1 175 doi: 10.1068/a251175
    [9]
    Batty M.Cellular Automata and Urban Form: A Primer[J].Journal of the American Planning Association, 1997, 63(2): 266-274 doi: 10.1080/01944369708975918
    [10]
    Batty M.Urban Evolution on the Desktop: Simulation with the Use of Extended Cellular Automata[J].Environment and Planning A, 1998, 30: 194-196
    [11]
    Torrens P, O'Sullivan D. Cellular Automata and Urban Simulation: Where do We Go from Here? [J]. Environment and Planning B: Planning and Design, 2001, 28(2): 163-168 doi: 10.1068/b2802ed
    [12]
    Santé I, García A M, Miranda D, et al. Cellular Automata Models for the Simulation of Real-World Urban Processes: A Review and Analysis[J]. Landscape and Urban Planning, 2010, 96(2): 108-122 doi: 10.1016/j.landurbplan.2010.03.001
    [13]
    Li X, Chen Y, Liu X, et al. Experiences and Issues of Using Cellular Automata for Assisting Urban and Regional Planning in China[J]. International Journal of Geographical Information Science, 2017, 31(8): 1 606-1 629 doi: 10.1080/13658816.2017.1301457
    [14]
    Li X, Yeh A G O. Calibration of Cellular Automata by Using Neural Networks for the Simulation of Complex Urban Systems[J].Environment and Planning A, 2001, 33(8): 1 445-1 462 doi: 10.1068/a33210
    [15]
    黎夏, 叶嘉安.基于神经网络的单元胞自动机CA及真实和优化的城市模拟[J].地理学报, 2002, 57(2):159-166 doi: 10.3321/j.issn:0375-5444.2002.02.005

    Li Xia, Yeh A G O. Neural-Network-Based Cellular Automata for Realistic and Idealized Urban Simulation[J]. Journal of Geographical Sciences, 2002, 57(2): 159-166 doi: 10.3321/j.issn:0375-5444.2002.02.005
    [16]
    Li X, Yeh A G O. Data Mining of Cellular Automata's Transition Rules[J].International Journal of Geographical Information Science, 2004, 18(8): 723-744 doi: 10.1080/13658810410001705325
    [17]
    Yang Q S, Li X, Shi X.Cellular Automata for Simulating Land Use Changes Based on Support Vector Machines[J]. Computers & Geosciences, 2008, 34(6): 592-602 http://www.sciencedirect.com/science/article/pii/S0098300407002087
    [18]
    Feng Y J, Liu Y, Tong X H, et al. Modeling Dynamic Urban Growth Using Cellular Automata and Particle Swarm Optimization Rules[J]. Landscape and Urban Planning, 2011, 102(3): 188-196 doi: 10.1016/j.landurbplan.2011.04.004
    [19]
    Li X, Liu X P, Gong P. Integrating Ensemble-Urban Cellular Automata Model with an Uncertainty Map to Improve the Performance of a Single Model[J]. International Journal of Geographical Information Science, 2015, 29(5): 762-785 doi: 10.1080/13658816.2014.997237
    [20]
    Chen Y M, Liu X P, Li X. Calibrating a Land Parcel Cellular Automaton (LP-CA) for Urban Growth Simulation Based on Ensemble Learning[J]. International Journal of Geographical Information Science, 2017, 31(12): 2 480-2 504 doi: 10.1080/13658816.2017.1367004
    [21]
    Li X, Liu Y, Liu X, et al. Knowledge Transfer and Adaptation for Land-Use Simulation with a Logistic Cellular Automaton[J].International Journal of Geographical Information Science, 2013, 27(10):1 829-1 848 doi: 10.1080/13658816.2013.825264
    [22]
    He Jialü, Li Xia, Yao Yao, et al. Mining Transition Rules of Cellular Automata for Simulating Urban Expansion by Using the Deep Learning Techniques[J].International Journal of Geographical Information Science, 2018, 32(10): 2 076-2 097 doi: 10.1080/13658816.2018.1480783
    [23]
    Zhai Y, Yao Y, Guan Q, et al. Simulating Urban Land Use Change by Integrating a Convolutional Neural Network with Vector-Based Cellular Automata[J].International Journal of Geographical Information Science, 2020, 34(7): 1 475-1 499 doi: 10.1080/13658816.2020.1711915
    [24]
    White R, Engelen G, Uljee I. The Use of Constrained Cellular Automata for High-Resolution Modeling of Urban Land-Use Dynamics[J]. Environment and Planning B, 1997, 24: 323-344 doi: 10.1068/b240323
    [25]
    Wu F, Webster C J. Simulation of Land Development Through the Integration of Cellular Automata and Multicriteria Evaluation [J]. Environment and Planning B, 1998, 25: 103-126 doi: 10.1068/b250103
    [26]
    Li X, Yeh A G O. Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using GIS[J]. International Journal of Geographical Information Science, 2002, 16(4): 323-343 doi: 10.1080/13658810210137004
    [27]
    Li X, Liu X P. An Extended Cellular Automation Using Case-Based Reasoning for Simulating Urban Development in a Large Complex Region[J].International Journal of Geographical Information Science, 2006, 20(10): 1 109-1 136 doi: 10.1080/13658810600816870
    [28]
    Tong X, Feng Y J.A Review of Assessment Methods for Cellular Automata Models of Land-Use Change and Urban Growth[J]. International Journal of Geographical Information Science, 2020, 34(5): 866-898 doi: 10.1080/13658816.2019.1684499
    [29]
    Pontius Jr R G, Si K. The Total Operating Characteristic to Measure Diagnostic Ability for Multiple Thresholds[J]. International Journal of Geographical Information Science, 2014, 28(3): 570-583 doi: 10.1080/13658816.2013.862623
    [30]
    van Vliet J, Bregt A K, Hagen-Zanker A.Revisiting Kappa to Account for Change in the Accuracy Assessment of Land-Use Change Models[J]. Ecological Modelling, 2011, 222(8): 1 367-1 375 doi: 10.1016/j.ecolmodel.2011.01.017
    [31]
    Pontius R G, Boersma W, Castella J C, et al. Comparing the Input, Output, and Validation Maps for Several Models of Land Change[J]. The Annals of Regional Science, 2008, 42(1): 11-37 doi: 10.1007/s00168-007-0138-2
    [32]
    Chen Y M, Li X, Liu X P, et al. Modeling Urban Land-Use Dynamics in a Fast Developing City Using the Modified Logistic Cellular Automaton with a Patch-Based Simulation Strategy[J]. International Journal of Geographical Information Science, 2014, 28(2): 234-255 doi: 10.1080/13658816.2013.831868
    [33]
    Li X, Yang Q S, Liu X P.Discovering and Evaluating Urban Signatures for Simulating Compact Development Using Cellular Automata[J]. Landscape and Urban Planning, 2008, 86(2): 177-186 doi: 10.1016/j.landurbplan.2008.02.005
    [34]
    Liu X P, Li X, Liu L, et al. A Bottom-up Approach to Discover Transition Rules of Cellular Automata Using Ant Intelligence[J]. International Journal of Geographical Information Science, 2008, 22(11-12): 1 247-1 269 doi: 10.1080/13658810701757510
    [35]
    Chen Y M, Li X, Liu X P, et al. An Agent-Based Model for Optimal Land Allocation (AgentLA) with a Contiguity Constraint[J]. International Journal of Geographical Information Science, 2010, 24(8):1 269-1 288 doi: 10.1080/13658810903401024
    [36]
    Li X, Lao C H, Liu X P, et al. Coupling Urban Cellular Automata with Ant Colony Optimization for Zoning Protected Natural Areas Under a Changing Landscape[J]. International Journal of Geographical Information Science, 2011, 25(4): 575-593 doi: 10.1080/13658816.2010.481262
    [37]
    Li X, Chen Y M, Liu X P, et al. Concepts, Methodologies, and Tools of an Integrated Geographical Simulation and Optimization System[J]. International Journal of Geographical Information Science, 2011, 25(4): 633-655 doi: 10.1080/13658816.2010.496370
    [38]
    Liang X, Liu X P, Li X, et al. Delineating Multi-scenario Urban Growth Boundaries with a CA-based FLUS Model and Morphological Method[J].Landscape and Urban Planning, 2018, 177: 47-63 doi: 10.1016/j.landurbplan.2018.04.016
    [39]
    Chen Y M, Li X, Liu X P, et al. Simulating Urban Growth Boundaries Using a Patch-Based Cellular Automaton with Economic and Ecological Constraints[J]. International Journal of Geographical Information Science, 2019, 33(1): 55-80 doi: 10.1080/13658816.2018.1514119
    [40]
    Yao Y, Li X, Liu X P, et al. Simulating Urban Land-Use Changes at a Large Scale by Integrating Dynamic Land Parcel Subdivision and Vector-Based Cellular Automata[J].International Journal of Geographical Information Science, 2017, 31(12): 2 452-2 479 doi: 10.1080/13658816.2017.1360494
    [41]
    Chen G Z, Li X, Liu X P, et al. Global Projections of Future Urban Land Expansion Under Shared Socioeconomic Pathways[J]. Nature Communications, 2020, 11(1): 1-12 doi: 10.1038/s41467-019-13993-7
    [42]
    Huang K N, Li X, Liu X P, et al. Projecting Global Urban Land Expansion and Heat Island Intensification Through 2050[J]. Environmental Research Letters, 2019, 14(11): 114 037 doi: 10.1088/1748-9326/ab4b71
    [43]
    Chen Y M, Li X, Liu X P, et al. Tele-Connecting China's Future Urban Growth to Impacts on Ecosystem Services Under the Shared Socioeconomic Pathways[J]. Science of the Total Environment, 2019, 652: 765-779 doi: 10.1016/j.scitotenv.2018.10.283

Catalog

    Article views (1875) PDF downloads (333) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return