ZOU Xuan, FU Ruinan, WANG Yawei, LI Zhiyuan, XU Zong, TANG Weiming, LI Yangyang. Inversion of GNSS Multipath Effects Around the Stations and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1416-1421. DOI: 10.13203/j.whugis20200392
Citation: ZOU Xuan, FU Ruinan, WANG Yawei, LI Zhiyuan, XU Zong, TANG Weiming, LI Yangyang. Inversion of GNSS Multipath Effects Around the Stations and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1416-1421. DOI: 10.13203/j.whugis20200392

Inversion of GNSS Multipath Effects Around the Stations and Its Applications

Funds: 

The National Key Research and Development Program of China 2018YFB0505201

More Information
  • Author Bio:

    ZOU Xuan, PhD, associate professor, specializes in high accuracy GNSS data processing. E-mail: zxuan@whu.edu.cn

  • Received Date: October 25, 2020
  • Available Online: September 19, 2022
  • Published Date: September 04, 2022
  •   Objectives  It is difficult to effectively evaluate and weaken the impact of observation environment change on data quality. To solve the problem, this paper studies a multi-point hemispherical grid mod‍el which can be applied to various satellite navigation systems.
      Methods  It integrates the observations of different global navigation satellite system (GNSS) satellite pairs in different observation periods to establish a global optimal multipath model. GNSS multipath error can be estimated effectively using multi-point hemispherical grid model (MHGM), image-based inverse of multipath effect and reflect the orientation of interference sources in the observation environment around stations.
      Results  To a certain extent the observation environment around stations can be modelled. The test under deliberate high multipath environment reveals that using MHGM significantly improved the root mean square error (RMSE) of the double-differ‍enced carrier phase observation residuals in the period of fixed ambiguity, reducing the mean RMSE from 0.983 cm to 0.318 cm, a 67.7% improvement. In addition, the abnormal areas with large value of correction in the MHGM results is consistent with the direction of the baffle mounted at the corresponding stations. This model indicates multipath effects on GNSS carrier phase observations in different directions from the station. The test with International GNSS Service historical observations shows MHGM can effectively reflect the influence of changing multipath interference around stations on carrier phase observations, with an average improvement of 29.5% in the RMSE of residuals over the past 18 years.
      Conclusions  This mod‍el can be used to evaluate the changes in observation environments surrounding stations over time. It has potential application value to improve the accuracy and reliability of augmentation system products.
  • [1]
    Dow J M, Neilan R E, Rizos C. The International GNSS Service in a Changing Landscape of Global Navigation Satellite Systems[J]. Journal of Geodesy, 2009, 83(3): 191-198
    [2]
    IGS. International GNSS Service: Terms of Reference[EB/OL]. [2020-09-11]. https://kb.igs.org/hc/en-us/articles/115003535547-IGS-Termsof-Reference-v-02-2017
    [3]
    IGS. Current IGS Site Guidelines[EB/OL]. [2020-09-11]. https://kb.igs.org/hc/en-us/articles/202011433-Current-IGS-Site-Guidelines
    [4]
    Villiger A, Dach R. International GNSS Service Technical Report 2018(IGS Annual Report)[M]. Bern, Switzerland: University of Bern, Bern Open Publishing, 2019
    [5]
    IGS. IGS Analysis Center Coordinator(ACC)[EB/OL]. [2020-09-11]. http://acc.igs.org/
    [6]
    Roberts G W, Meng X L, Psimoulis P, et al. Time Series Analysis of Rapid GNSS Measurements for Quasi-Static and Dynamic Bridge Monitoring[M]// Geodetic Time Series Analysis in Earth Sciences. Berlin, Germany: Springer, 2019
    [7]
    Hofmann-Wellenhof B, Lichtenegger H, Wasle E. GNSS-Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More[M]. Berlin, Germary: Springer, 2008
    [8]
    黄声享, 李沛鸿, 杨保岑, 等. GPS动态监测中多路径效应的规律性研究[J]. 武汉大学学报·信息科学版, 2005, 30(10): 877-880 http://ch.whu.edu.cn/article/id/2295

    Huang Shengxiang, Li Peihong, Yang Baocen, et al. Study on the Characteristics of Multipath Effects in GPS Dynamic Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 877-880 http://ch.whu.edu.cn/article/id/2295
    [9]
    Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5005-5017 doi: 10.1029/96JB03860
    [10]
    钟萍, 丁晓利, 郑大伟. CVVF方法用于GPS多路径效应的研究[J]. 测绘学报, 2005, 34(2): 161-167 doi: 10.3321/j.issn:1001-1595.2005.02.013

    Zhong Ping, Ding Xiaoli, Zheng Dawei. Study of GPS Multipath Effects with Method of CVVF[J]. Acta Geodaetica et Cartographic Sinica, 2005, 34 (2): 161-167 doi: 10.3321/j.issn:1001-1595.2005.02.013
    [11]
    周晓卫, 戴吾蛟, 朱建军, 等. HVF方法在GPS多路径效应研究中的应用[J]. 大地测量与地球动力学, 2007, 27(1): 107-111 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200701023.htm

    Zhou Xiaowei, Dai Wujiao, Zhu Jianjun, et al. HVF Method and Its Application in the Study on GPS Multipath Effects[J]. Journal of Geodesy and Geodynamics, 2007, 27(1): 107-111 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200701023.htm
    [12]
    Bock Y, Nikolaidis R M, Jonge P J, et al. Instantaneous Geodetic Positioning at Medium Distances with the Global Positioning System[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B12): 28223-28253 doi: 10.1029/2000JB900268
    [13]
    Ragheb A E, Clarke P J, Edwards S J. GPS Sidereal Filtering: Coordinate-and Carrier-Phase-Level Strategies[J]. Journal of Geodesy, 2007, 81(5): 325-335 doi: 10.1007/s00190-006-0113-1
    [14]
    陈德忠, 叶世榕, 刘炎炎, 等. 基于观测值域的GPS多路径误差应用分析[J]. 武汉大学学报·信息科学版, 2014, 39(2): 147-151 doi: 10.13203/j.whugis20120719

    Chen Dezhong, Ye Shirong, Liu Yanyan, et al. Applied Analysis of GPS Multipath Errors Based on Observation Domain[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 147-151 doi: 10.13203/j.whugis20120719
    [15]
    王琰, 张传定, 胡小工, 等. 球面多路径格网的恒星日滤波算法及其在PPP中的应用[J]. 武汉大学学报·信息科学版, 2018, 43(10): 1496-1503 doi: 10.13203/j.whugis20160454

    Wang Yan, Zhang Chuanding, Hu Xiaogong, et al. Sidereal Filtering Based on Sphere Multipath Stacking and Its Application in PPP[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1496-1503 doi: 10.13203/j.whugis20160454
  • Related Articles

    [1]YANG Renfei. Research on Multi-level Classification and Change Detection Using Remote Sensing Images for Urban Wetland[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2105-2105. DOI: 10.13203/j.whugis20230130
    [2]WANG Zhipan, SHEN Yan, WANG Liang, ZHANG Qingling, YOU Shucheng. High-Resolution Remote Sensing Image Building Change Detection Based on One-Class Classifier Framework[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1610-1618. DOI: 10.13203/j.whugis20180485
    [3]LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294
    [4]YANG Lamei, JIA Yonghong. A Method for Determining the Natural Boundary of Seasonal Saltwater Lake Wetland with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 419-425. DOI: 10.13203/j.whugis20180207
    [5]LI Peng, LI Dahui, LI Zhenhong, WANG Houjie. Wetland Classification Through Integration of GF-3 SAR and Sentinel-2B Multispectral Data over the Yellow River Delta[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1641-1649. DOI: 10.13203/j.whugis20180258
    [6]FENG Wenqing, ZHANG Yongjun. Object-oriented Change Detection for Remote Sensing Images Based on Fuzzy Comprehensive Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 875-881. DOI: 10.13203/j.whugis20140291
    [7]CHEN Jianqun, WU Xie, WANG Zhenxing, ZHU Jianjun. Establishment of Fundamental Geographic Information System and Associated Key Technologies for Poyang Lake Wetland[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 888-891.
    [8]GONG Hao, ZHANG Jingxiong, SHEN Shaohong. Object-Based Correspondence Analysis for Improved Accuracy in Remote Sensing Change Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 544-547.
    [9]ZHANG Jianqing, SHE Qiong, PAN Li. Change Detection of Residential Area by Remote Sensing Image Based on LBP/C Texture[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 7-11.
    [10]ZHANG Xiaodong, LI Deren, GONG Jianya, QIN Qianqing. A Change Detection Method of Integrating Remote Sensing and GIS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 266-269.
  • Cited by

    Periodical cited type(3)

    1. 钟振,文麒麟,梁金福. 应用重力场模型二阶位系数及新近岁差率约束火星内核大小及密度组成. 物理学报. 2023(02): 386-392 .
    2. 文麒麟,钟振. 应用模拟退火算法估算月核大小及其密度组成. 物理学报. 2023(08): 347-353 .
    3. 魏二虎,任晓斌,刘经南,李连艳,聂桂根,李岩林. 利用VLBI观测量对月球天平动参数解算及着陆器定位和测速的改进. 武汉大学学报(信息科学版). 2022(04): 483-491 .

    Other cited types(1)

Catalog

    Article views (928) PDF downloads (156) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return