SHI Hongkai, HE Xiufeng, WU Yihao, LIU Yanxiong, HUANG Jia. Parameterization Analysis of the Lagrange Basis Function Method for the Reconstruction of the Mean Dynamic Topography[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 239-247. DOI: 10.13203/j.whugis20200340
Citation: SHI Hongkai, HE Xiufeng, WU Yihao, LIU Yanxiong, HUANG Jia. Parameterization Analysis of the Lagrange Basis Function Method for the Reconstruction of the Mean Dynamic Topography[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 239-247. DOI: 10.13203/j.whugis20200340

Parameterization Analysis of the Lagrange Basis Function Method for the Reconstruction of the Mean Dynamic Topography

More Information
  • Received Date: March 07, 2021
  • Available Online: February 16, 2023
  • Published Date: February 04, 2023
  •   Objectives  The reconstruction of the mean dynamic topography (MDT) plays an important role in the fusion of the mean sea surface and geoid for high-precision MDT modelling.
      Methods  The parameterization algorithm based on the Lagrange basis functions (LBFs) is investigated, and the performance of the MDT solutions based on different choice of the LBFs is studied in detail, where the LBFs consist of 4/16/36 parameters (P) are introduced and analyzed.
      Results  The results show that the MDT solution based on 16 parameters is more consistent with the comparative data. The standard deviation (SD) of misfits between the solved MDT using 16P and the comparative data is 3.1 cm, which is 0.9 cm/1.1 cm smaller than that of the 4P/36P; and the misfits using 16P are improved by 5 cm than that using 4P/36P in regions with a strong variation of ocean current.
      Conclustions  The geostrophic velocities based on the 16P-solution are in good agreement with the comparative data, where the SD of misfits between the zonal geostrophic component by the 16P and the comparison data is reduced by 0.4 cm/s and 2.8 cm/s compared to the results of 4P/36P.
  • [1]
    杨元喜, 刘焱雄, 孙大军, 等. 海底大地基准网建设及其关键技术[J]. 中国科学, 2020, 50(7): 936-945. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007005.htm

    Yang Yuanxi, Liu Yanxiong, Sun Dajun, et al. Seafloor Geodetic Network Establishment and Key Technologies[J]. Scientia Sinica, 2020, 50(7): 936-945. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007005.htm
    [2]
    刘焱雄, 郭锴, 何秀凤, 等. 机载激光测深技术及其研究进展[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201709001.htm

    Liu Yanxiong, Guo Kai, He Xiufeng, et al. Research Progress of Airborne Laser Bathymetry Technology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201709001.htm
    [3]
    章传银, 李建成, 晁定波. 联合卫星测高和海洋物理数据计算近海稳态海面地形[J]. 武汉测绘科技大学学报, 2000, 25(6): 500-504. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200006006.htm

    Zhang Chuanyin, Li Jiancheng, Chao Dingbo. Calculating Stationary Sea Surface Topography of Coastal Area with Altimeter and Oceanographic Data[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(6): 500-504. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200006006.htm
    [4]
    赵明才, 吴太旗, 翟国君, 等. 中国近海海面地形及形成机制研究[J]. 海洋测绘, 2006, 26(3): 1-6. doi: 10.3969/j.issn.1671-3044.2006.03.001

    Zhao Mingcai, Wu Taiqi, Zhai Guojun, et al. The Inshore Sea Surface Topography of China and Its Mechanism[J]. Hydrographic Surveying and Charting, 2006, 26(3): 1-6. doi: 10.3969/j.issn.1671-3044.2006.03.001
    [5]
    Andersen O, Knudsen P, Stenseng L. The DTU13 MSS and MDT from 20 Years of Satellite Altimetry[M]//International Association of Geodesy Symposia. Cham: Springer, 2015.
    [6]
    Traon P Y, Antoine D, Bentamy A, et al. Use of Satellite Observations for Operational Oceanography: Recent Achievements and Future Prospects[J]. Journal of Operational Oceanography, 2015, 8(sup1): 12-27. doi: 10.1080/1755876X.2015.1022050
    [7]
    Bruinsma S L, Förste C, Abrikosov O, et al. ESA's Satellite-Only Gravity Field Model via the Direct Approach Based on all GOCE Data[J]. Geophysical Research Letters, 2014, 41(21): 7508-7514. doi: 10.1002/2014GL062045
    [8]
    吴怿昊, 罗志才. 联合多代卫星测高和多源重力数据的局部大地水准面精化方法[J]. 地球物理学报, 2016, 59(5): 1596-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201605005.htm

    Wu Yihao, Luo Zhicai. The Approach of Regional Geoid Refinement Based on Combining Multi-satellite Altimetry Observations and Heterogeneous Gravity Data Sets[J]. Chinese Journal of Geophysics, 2016, 59(5): 1596-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201605005.htm
    [9]
    吴怿昊, 罗志才, 周波阳. 基于泊松小波径向基函数融合多源数据的局部重力场建模[J]. 地球物理学报, 2016, 59(3): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603008.htm

    Wu Yihao, Luo Zhicai, Zhou Boyang. Regional Gravity Modeling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions[J]. Chinese Journal of Geophysics, 2016, 59(3): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603008.htm
    [10]
    白希选, 闫昊明, 朱耀仲, 等. 利用卫星大地测量技术研究海面动力地形及地转流的进展[J]. 地球物理学进展, 2016, 31(5): 2063-2071. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605024.htm

    Bai Xixuan, Yan Haoming, Zhu Yaozhong, et al. Progress in Mean Dynamic Topography and Geostrophic Current Research Based on Satellite Geodetic Techniques[J]. Progress in Geophysics, 2016, 31(5): 2063-2071. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605024.htm
    [11]
    Ke B G, Zhang L M, Xu J, et al. Determination of the Mean Dynamic Ocean Topography Model Through Combining Multi-source Gravity Data and DTU15 MSS Around China's Coast[J]. Advances in Space Research, 2019, 63(1): 203-212. doi: 10.1016/j.asr.2018.10.040
    [12]
    Bingham R J. Nonlinear Anisotropic Diffusive Filtering Applied to the Ocean's Mean Dynamic Topography[J]. Remote Sensing Letters, 2010, 1(4): 205-212. doi: 10.1080/01431161003743165
    [13]
    Sánchez-Reales J M, Andersen O B, Vigo M I. Improving Surface Geostrophic Current from a GOCE-Derived Mean Dynamic Topography Using Edge-Enhancing Diffusion Filtering[J]. Pure and Applied Geophysics, 2016, 173(3): 871-884.
    [14]
    Bingham R J, Haines K, Hughes C W. Calculating the Ocean's Mean Dynamic Topography from a Mean Sea Surface and a Geoid[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(10): 1808-1822.
    [15]
    Rio M H. A Mean Dynamic Topography Computed over the World Ocean from Altimetry, in Situ Measurements, and a Geoid Model[J]. Journal of Geophysical Research, 2004, 109(C12): C12032.
    [16]
    Mulet S, Rio M H, Etienne H, et al. The New CNES-CLS18 Global Mean Dynamic Topography[J]. Ocean Science, 2021, 17(3): 789–808.
    [17]
    Becker S, Freiwald G, Losch M, et al. Rigorous Fusion of Gravity Field, Altimetry and Stationary Ocean Models[J]. Journal of Geodynamics, 2012, 59/60: 99-110.
    [18]
    Wu Y H, Abulaitijiang A, Featherstone W E, et al. Coastal Gravity Field Refinement by Combining Airborne and Ground-Based Data[J]. Journal of Geodesy, 2019, 93(12): 2569-2584.
    [19]
    Walters R A, Lane E M, Henry R F. Semi-Lagrangian Methods for a Finite Element Coastal Ocean Model[J]. Ocean Modelling, 2007, 19(3/4): 112-124.
    [20]
    Bassi F, Rebay S. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279.
    [21]
    Zhang Y L, Baptista A M. SELFE: A Semi-Implicit Eulerian-Lagrangian Finite-Element Model for Cross-Scale Ocean Circulation[J]. Ocean Modelling, 2008, 21(3/4): 71-96.
    [22]
    Wang Q, Danilov S, Schröter J. Finite Element Ocean Circulation Model Based on Triangular Prismatic Elements, with Application in Studying the Effect of Topography Representation[J]. Journal of Geophysical Research, 2008, 113(C5): C05015.
    [23]
    Sánchez-Reales J M, Vigo M I, Jin S, et al. Global Surface Geostrophic Ocean Currents Derived from Satellite Altimetry and GOCE Geoid[J]. Marine Geodesy, 2012, 35(sup1): 175-189.
    [24]
    王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京: 清华大学出版社, 1997.

    Wang Xucheng, Shao Min. Basic Principles and Numerical Methods of Finite Element Method[M]. Beijing, China: Tsinghua University Press, 1997.
    [25]
    陆金甫, 关治. 偏微分方程数值解法[M]. 北京: 清华大学出版社, 2016.

    Lu Jinfu, Guan Zhi. Numerical Solution of Partial Differential Equation[M]. Beijing, China: Tsinghua University Press, 2016.
    [26]
    Carton J A, Chepurin G A, Chen L G. SODA3: A New Ocean Climate Reanalysis[J]. Journal of Climate, 2018, 31(17): 6967-6983.
    [27]
    Copernicus Climate Change Service. Sea Level Daily Gridded Data for the Global Ocean from 1993 to Present [EB/OL]. [2019-04-16]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/sea-level-daily-gridded-data-for-the-global-ocean-from-1993-to-present.
    [28]
    Andersen O B, Piccioni G, Knudsen P, et al. The DTU15 Mean Sea Surface and Mean Dynamic Topography-Focusing on Arctic Issues and Development[C]//2015 Ocean Surface Topography Science Team Meeting, Prague, Czech Republic, 2016.
    [29]
    Cancet M, Griffin D, Cahill M, et al. Evaluation of GlobCurrent Surface Ocean Current Products: A Case Study in Australia[J]. Remote Sensing of Environment, 2019, 220: 71-93.
    [30]
    Chassignet E P, Hurlburt H E, Smedstad O M, et al. The HYCOM Data Assimilative System[J]. Journal of Marine Systems, 2007, 65(1/2/3/4): 60-83.
    [31]
    Taburet G, Mertz F, Legeais J F. Sea Level Daily Gridded Data from Satellite Observations for the Global Ocean from 1993 to Present[EB/OL]. [2018-08-03]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-global.
    [32]
    Knudsen P, Andersen O B, Forsberg R, et al. Combining Altimetric/Gravimetric and Ocean Model Mean Dynamic Topography Models in the GOCINA Region[M]//Dynamic Planet. Berlin, Germany: Springer, 2008.
    [33]
    Li J C, Hon Y C. Domain Decomposition for Radial Basis Meshless Methods[J]. Numerical Methods for Partial Differential Equations, 2004, 20(3): 450-462.
    [34]
    Wu Y H, Zhou H, Zhong B, et al. Regional Gravity Field Recovery Using the GOCE Gravity Gradient Tensor and Heterogeneous Gravimetry and Altimetry Data[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(8): 6928-6952.
    [35]
    Wu Y H, Luo Z C, Zhong B, et al. A Multi-layer Approach and Its Application to Model a Local Gravimetric Quasi-Geoid Model over the North Sea: QGNSea V1.0[J]. Geoscientific Model Development, 2018, 11(12): 4797-4815.
  • Related Articles

    [1]LIU Jiping, CAO Yuanhui, WANG Yong, REN Fu, DU Qingyun. Evaluating the Accessibility of Medical Services in the 15 min Life Circle Using Internet Pan-Map Resources: A Case Study in Shanghai[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2054-2063. DOI: 10.13203/j.whugis20220565
    [2]ZHAO Zhongguo, ZHANG Feng, ZHENG Jianghua. Evaluation of Landslide Susceptibility by Multiple Adaptive Regression Spline Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 442-450. DOI: 10.13203/j.whugis20190136
    [3]WANG Yafei, YUAN Hui, CHEN Biyu, LI Qingquan, WAN Meng, WANG Jiayao, GUO Jianzhong. Measuring Place-Based Accessibility Under Travel Time Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1723-1729. DOI: 10.13203/j.whugis20180015
    [4]LU Yonghua, LI Shuang. Spatial Accessibility of Indoor Emergency Shelters Based on Improved G2SFCA in Shenzhen City[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1391-1398. DOI: 10.13203/j.whugis20180456
    [5]LIU Haiyan, PANG Xiaoping, WANG Yue, LI Zhongxiang. Quantitative Research for Site-selection of Antarctic Year-round Research Stations Based on Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 390-394. DOI: 10.13203/j.whugis20150260
    [6]FU Zhongliang, YANG Yuanwei, GAO Xianjun, ZHAO Xingyuan, LU Yuefeng, CHEN Shaoqin. Road Networks Matching Using Multiple Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 171-177. DOI: 10.13203/j.whugis20150112
    [7]Lu Jun, Dai Wujiao, Zhang Zhetao. Modeling Dam Deformation Using Varying Coefficient Regression[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 139-142.
    [8]NONG Yu, WANG Kun, DU Qingyun. Modeling Land Use Change Using Multinomial Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 743-746.
    [9]FANG Zhixiang, LI Qingquan, SHAW Shihlung. Representation of Location-Specific Space-Time Accessibility Based on Time Geography Framework[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1091-1095.
    [10]Wu Zian. The Independent Variablas-snooping in the Regression Analysis of Dam Deformation[J]. Geomatics and Information Science of Wuhan University, 1993, 18(1): 20-26.
  • Cited by

    Periodical cited type(28)

    1. 董威威,蒋贵国,梁小雅,钟孟君,程珍旎. 基于改进引力模型的成渝地区双城经济圈城市经济联系网络演变研究. 四川师范大学学报(自然科学版). 2025(01): 82-93 .
    2. 詹庆明,李轩,樊智宇. 利用非负矩阵分解识别县域人群活动时空特征. 测绘地理信息. 2024(02): 108-113 .
    3. 李静波,关雪峰,曾星,杨昌兰,邢巍然,吴华意. 长株潭城市群建成区时空扩展特征及驱动力分析. 武汉大学学报(信息科学版). 2024(06): 1028-1039 .
    4. 何明卫,赵庆文,李健波. 组团城市通勤流网络特征及影响因素分析——以贵阳市为例. 昆明理工大学学报(自然科学版). 2024(04): 249-260 .
    5. 胡秋实,李锐,吴华意,刘朝辉,蔡晶. 顾及城市场景变化的人口分析单元表达. 武汉大学学报(信息科学版). 2024(10): 1788-1799 .
    6. 薛山,廖一兰,李春林,胡艺. 不同人口流动模式下城市传染病时空传播模型适用性研究. 地球信息科学学报. 2023(01): 208-222 .
    7. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(01): 72-81 .
    8. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(02): 72-81 .
    9. 郭联欢,洪昕晨. 城市社会感知研究与应用进展. 中外建筑. 2023(06): 12-17 .
    10. 严雪心,周婕,盛富斌,牛强. 大城市近郊区产业类型对就业人口流动的差异化影响——以武汉市为例. 经济地理. 2023(10): 63-74 .
    11. 真诗泳,林钦贤,张露丹,李嘉政,林玉英,陈诚,潘自宝,胡喜生. 基于多源数据的城市内部空间交互特征:以福州市主城区为例. 科学技术与工程. 2023(35): 14937-14946 .
    12. 赵凯旭,张帅兵,黄晓军,李恩龙,武风奇. 新冠疫情管控期间西安市人口分布演变及影响因素探测——基于多源时空大数据视角. 人口与发展. 2022(01): 140-150 .
    13. 甄峰,李哲睿,谢智敏. 基于人口流动的城市内部空间结构特征及其影响因素分析——以南京市为例. 地理研究. 2022(06): 1525-1539 .
    14. 龚丽丽,蔡忠亮,李伯钊,牛彦芬,苏世亮. 街道尺度下城市居民出行特征分析. 测绘地理信息. 2022(S1): 69-73 .
    15. 段艳慧,郭伟,赵学胜,张晓莹,张冰瑞. 基于Landsat影像和统计数据的北京市人口密度制图. 北京测绘. 2022(08): 1096-1101 .
    16. 赵虎,尚铭宇,张悦,张浩楠,李鹏乾. 区域中心城市就业空间格局及优化策略研究——以山东省青岛市为例. 山东建筑大学学报. 2022(06): 61-69 .
    17. 孙艳玲,李俊蓉,张夏坤,裴新蕊,刘子菲,郭鹏. 基于昼夜人口变化的应急避难场所可达性评价——以天津市西青区为例. 安全与环境学报. 2022(06): 3342-3349 .
    18. 张爱民. 基于大数据的江西省就业收入和社会保障研究. 科技广场. 2022(05): 71-78 .
    19. 何建华,覃荣诺,丁愫,李江,岳桥兵. 基于乡村宜居性和人口流动网络特征的农村居民点重构. 武汉大学学报(信息科学版). 2021(03): 402-409 .
    20. 罗桑扎西,甄峰,张姗琪. 复杂网络视角下的城市人流空间概念模型与研究框架. 地理研究. 2021(04): 1195-1208 .
    21. 季航宇,蔡忠亮,姜莉莉,李桂娥,李伯钊. 出租车出行的空间不平等及其与人口结构的关联. 武汉大学学报(信息科学版). 2021(05): 766-776 .
    22. 刘正廉,桂志鹏,吴华意,秦昆,吴京航,梅宇翱,赵晶. 融合建筑物与POI数据的精细人口空间化研究. 测绘地理信息. 2021(05): 102-106 .
    23. 付诗航,刘耀林,方莹,杨孝军,刘艳芳,彭明军. 基于SCD的公共交通换乘时空模式——以武汉市为例. 武汉大学学报(信息科学版). 2020(07): 1089-1098 .
    24. 甘田,刘鼎. 基于手机数据的职住空间关系研究——以重庆市主城区为例. 城市交通. 2020(05): 36-44+119 .
    25. 刘艳芳,方飞国,刘耀林,罗名海. 时空大数据在空间优化中的应用. 测绘地理信息. 2019(03): 7-20 .
    26. 杨朗,周丽娜,张晓明. 基于手机信令数据的广州市职住空间特征及其发展模式探究. 城市观察. 2019(03): 87-96 .
    27. 花磊,彭宏杰,杨秀锋,刘秀芸,袁绪英,吴宜进. 基于腾讯位置大数据的长江经济带人口流动空间分析. 华中师范大学学报(自然科学版). 2019(05): 815-820 .
    28. 宋小冬,杨钰颖,钮心毅. 上海典型产业园区职工居住地、通勤距离的变化及影响机制. 城市发展研究. 2019(12): 53-61 .

    Other cited types(17)

Catalog

    Article views (504) PDF downloads (57) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return