Citation: | GUO Danhuai, ZHANG Mingke, JIA Nan, WANG Yangang. Survey of Point-of-Interest Recommendation Research Fused with Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1890-1902. DOI: 10.13203/j.whugis20200334 |
[1] |
Yu Y, Chen X.A Survey of Point-of-Interest Recommendation in Location-Based Social Networks[C]. The 29th AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 2015
|
[2] |
Shang S, Guo D, Liu J, et al. Finding Regions of Interest Using Location Based Social Media[J]. Neurocomputing, 2016, 173:118-123 http://www.sciencedirect.com/science/article/pii/S0925231215011285
|
[3] |
宁津生, 吴学群, 刘子尧.顾及道路通达性和时间成本的多用户位置推荐[J].武汉大学学报·信息科学版, 2019, 44(5):633-639 doi: 10.13203/j.whugis20190026
Ning Jinsheng, Wu Xuequn, Liu Ziyao. Multi-user Location Recommendation Considering Road Accessibility and Time-Cost[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):633-639 doi: 10.13203/j.whugis20190026
|
[4] |
Zhao S, King I, Lü M R. A Survey of Point-of-Interest Recommendation in Location-Based Social Networks[OL].https://arxiv.org/abs/1607.00647v1, 2016
|
[5] |
Yin H, Wang W, Wang H, et al. Spatial-Aware Hierarchical Collaborative Deep Learning for POI Recommendation[J].IEEE Transactions on Knowledge and Data Engineering, 2017, 29(11):2 537-2 551 doi: 10.1109/TKDE.2017.2741484
|
[6] |
Xie M, Yin H, Wang H, et al. Learning Graph-Based POI Embedding for Location-Based Recommendation[C]. The 25th ACM International on Conference on Information and Knowledge Management, IUPUI, Indianapolis, 2016
|
[7] |
Qian T, Liu B, Nguyen Q V H, et al. Spatiotemporal Representation Learning for Translation-Based POI Recommendation[J]. ACM Transactions on Information Systems (TOIS), 2019, 37(2):1-24 doi: 10.1145/3295499
|
[8] |
李伟, 陈毓芬, 李萌, 等.基于情境的POI个性化推荐方法研究[J].武汉大学学报·信息科学版, 2015, 40(6):829-833 doi: 10.13203/j.whugis20130657
Li Wei, Chen Yufen, Li Meng, et al. A Method of Context-Based POI Personalized Recommendation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):829-833 doi: 10.13203/j.whugis20130657
|
[9] |
Liu W, Lai H, Wang J, et al. Mix Geographical Information into Local Collaborative Ranking for POI Recommendation[J]. World Wide Web, 2020, 23(1):131-152 doi: 10.1007/s11280-019-00681-1
|
[10] |
Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geography, 1970, 46:234-240 doi: 10.2307/143141
|
[11] |
Cheng C, Yang H, King I, et al. Fused Matrix Factorization with Geographical and Social Influence in Location-Based Social Networks[C]. National Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012
|
[12] |
Li H, Yong G, Hong R, et al. Point-of-Interest Recommendations: Learning Potential Check-Ins from Friends[C]. The 22nd ACM SIGKDD International Conference, San Francisco, California, USA, 2016
|
[13] |
Ye M, Yin P, Lee W, et al. Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation[C]. The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 2011
|
[14] |
Li X, Cong G, Li X, et al. Rank-GeoFM: A Ranking Based Geographical Factorization Method for Point-of-Interest Recommendation[C]. The 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 2015
|
[15] |
Lian D, Zhao C, Xie X, et al. GeoMF: Joint Geographical Modeling and Matrix Factorization for Point-of-Interest Recommendation[C].The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2014
|
[16] |
Ma C, Zhang Y, Wang Q, et al. Point-of-Interest Recommendation: Exploiting Self-Attentive Autoencoders with Neighbor-Aware Influence[C]. The 27th ACM International Conference on Information and Knowledge Management, Lingotto, Turin, Italy, 2018
|
[17] |
Gao H, Tang J, Hu X, et al. Exploring Temporal Effects for Location Recommendation on Location-Based Social Networks[C].The 7th ACM Conference on Recommender Systems, Hong Kong, China, 2013
|
[18] |
Zhang J D, Chow C Y, Li Y. Lore: Exploiting Sequential Influence for Location Recommendations[C]. The 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Dallas, Texas, USA, 2014
|
[19] |
Chen M, Liu Y, Yu X. NLPMM: A Next Location Predictor with Markov Modeling[C]. Pacific-Asia Conference on Knowledge Discovery and Data Mining, Tainan, China, 2014
|
[20] |
Cheng C, Yang H, Lü M R, et al. Where You Like to Go Next: Successive Point-of-Interest Recommendation[C].The 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 2013
|
[21] |
Zhao S, Zhao T, King I, et al. Geo-Teaser: Geo-Temporal Sequential Embedding Rank for Point-of-Interest Recommendation[C].The 26th International Conference on World Wide Web Companion, Perth, Australia, 2017
|
[22] |
Zhang J, Chow C. Core:Exploiting the Personalized Influence of Two-Dimensional Geographic Coordinates for Location Recommendations[J]. Information Sciences, 2015, 293:163-181 http://smartsearch.nstl.gov.cn/paper_detail.html?id=28ce8adc1bd8f913b7e296290d239f82
|
[23] |
Konstas I, Stathopoulos V, Jose J M. On Social Networks and Collaborative Recommendation[C]. The 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, MA, USA, 2009
|
[24] |
Logesh R, Subramaniyaswamy V. A Reliable Point of Interest Recommendation Based on Trust Relevancy Between Users[J]. Wireless Personal Communications, 2017, 97(2):2 751-2 780 doi: 10.1007/s11277-017-4633-1
|
[25] |
Rahimi S M, Xin W. Location Recommendation Based on Periodicity of Human Activities and Location Categories[C]. Pacific-Asia Conference on Knowledge Discovery and Data Mining, Tainan, China, 2013
|
[26] |
Ying J J C, Kuo W N, Tseng V S, et al. Mining User Check-in Behavior with a Random Walk for Urban Point-of-Interest Recommendations[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3):1-26 doi: 10.1145/2523068
|
[27] |
Zhang J D, Chow C Y. GeoSoCa: Exploiting Geographical, Social and Categorical Correlations for Point-of-Interest Recommendations[C]. The 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 2015
|
[28] |
Wang W, Yin H, Chen L, et al. Geo-Sage: A Geographical Sparse Additive Generative Model for Spatial Item Recommendation[C].The 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 2015
|
[29] |
Yin H, Sun Y, Cui B, et al. LCARS: A Location-Content-Aware Recommender System[C]. The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, 2013
|
[30] |
Yin H, Zhou X, Cui B, et al. Adapting to User Interest Drift for POI Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10):2 566-2 581 http://ieeexplore.ieee.org/document/7491346/
|
[31] |
Ye M, Yin P, Lee W C, et al. Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation[C]. The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 2011
|
[32] |
Xiong L, Chen X, Huang T K, et al. Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization[C].The 2010 SIAM International Conference on Data Mining, Columbus, Ohio, USA, 2010
|
[33] |
Liu B, Xiong H, Papadimitriou S, et al. A General Geographical Probabilistic Factor Model for Point of Interest Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(5):1 167-1 179 doi: 10.1109/TKDE.2014.2362525
|
[34] |
Liu B, Fu Y, Yao Z, et al.Learning Geographical Preferences for Point-of-Interest Recommendation[C].The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, 2013
|
[35] |
Cheng C, Yang H, King I, et al. Fused Matrix Factorization with Geographical and Social Influence in Location-Based Social Networks[C]. The 26th AAAI Conference on Artificial Intelligence, Toronto, Canada, 2012
|
[36] |
Liu Y, Wei W, Sun A, et al. Exploiting Geographical Neighborhood Characteristics for Location Recommendation[C]. The 23rd ACM International Conference on Information and Knowledge Management, Shanghai, China, 2014
|
[37] |
Feng S, Li X, Zeng Y, et al. Personalized Ranking Metric Embedding for Next New POI Recommendation[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015
|
[38] |
Ye J, Zhu Z, Cheng H. What's Your Next Move: User Activity Prediction in Location-Based Social Networks[C]. The 2013 SIAM International Conference on Data Mining, Calgary, AB, Canada, 2013, DOI: 10.1137/1.9781611972832.19
|
[39] |
Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-Based Recommendations with Recurrent Neural Networks[OL].https://arxiv.org/abs/1511.06939,2016
|
[40] |
He X, Liao L, Zhang H, et al. Neural Collaborative Filtering[C].The 26th International Conference on World Wide Web, Perth, Australia, 2017
|
[41] |
Kim D, Park C, Oh J, et al. Convolutional Matrix Factorization for Document Context-Aware Recommendation[C].The 10th ACM Conference on Recommender Systems, Boston, MA, USA, 2016
|
[42] |
Wang H, Wang N, Yeung D Y. Collaborative Deep Learning for Recommender Systems[C]. The 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 2015
|
[43] |
Sheng L, Kawale J, Yun F. Deep Collaborative Filtering via Marginalized Denoising Auto-Encoder[C]. The 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 2015
|
[44] |
Mikolov T, Karafiat M, Burget L, et al. Recurrent Neural Network Based Language Model[C]. Conference of the International Speech Communication Association, Kuhari, Chiba, Japan, 2010
|
[45] |
Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1 735-1 780
|
[46] |
Chung J, Gulcehre C, Cho K, et al.Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[OL]. https://arxiv.org/abs/1412.3555,2014
|
[47] |
Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. https://arxiv.org/abs/1301.3781,2013
|
[48] |
Barkan O, Koenigstein N. Item2Vec: Neural Item Embedding for Collaborative Filtering[C].The 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 2016
|
[49] |
Liu X, Liu Y, Li X. Exploring the Context of Locations for Personalized Location Recommendations[C].The 25th International Joint Conference on Artificial Intelligence, New York, USA, 2016
|
[50] |
Feng S, Cong G, An B, et al.POI2Vec: Geographical Latent Representation for Predicting Future Visitors[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2017
|
[51] |
Yang C, Bai L, Zhang C, et al. Bridging Collaborative Filtering and Semi-Supervised Learning: A Neural Approach for POI Recommendation[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 2017
|
[52] |
Hang M, Pytlarz I, Neville J. Exploring Student Check-in Behavior for Improved Point-of-Interest Prediction[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 2018
|
[53] |
Zhang Z, Li C, Wu Z, et al. Next: A Neural Network Framework for Next POI Recommendation[J]. Frontiers of Computer Science, 2020, 14(2):314-333 http://arxiv.org/abs/1704.04576
|
[54] |
Perozzi B, Alrfou R, Skiena S. DeepWalk: Online Learning of Social Representations[C].The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2014
|
[55] |
Yuan Q, Cong G, Ma Z, et al. Time-Aware Point-of-Interest Recommendation[C]. The 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 2013
|
[56] |
Cho E, Myers S A, Leskovec J. Friendship and Mobility: User Movement in Location-Based Social Networks[C]. The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 2011
|
[57] |
Sedhain S, Menon A K, Sanner S, et al. AutoRec: Autoencoders Meet Collaborative Filtering[C]. The 24th International Conference on World Wide Web, Florence, Italy, 2015
|
[58] |
Wu Y, Dubois C, Zheng A X, et al. Collaborative Denoising Auto-Encoders for Top-N Recommender Systems[C].The 9th ACM International Conference on Web Search and Data Mining, San Francisco, CA, USA, 2016
|
[59] |
冯浩, 黄坤, 李晶, 等.基于深度学习的混合兴趣点推荐算法[J].电子与信息学报, 2019, 41(4):880-887 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DZYX201904017
Feng Hao, Huang Kun, Li Jing, et al. Hybrid Point of Interest Recommendation Algorithm Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2019, 41(4):880-887 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DZYX201904017
|
[60] |
Dong X, Yu L, Wu Z, et al. A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2017
|
[61] |
Liu W, Wang Z J, Yao B, et al. Geo-ALM: POI Recommendation by Fusing Geographical Information and Adversarial Learning Mechanism[C]. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019
|
[62] |
Wang X, He X, Wang M, et al. Neural Graph Collaborative Filtering[C]. The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 2019
|
[63] |
Manotumruksa J, Macdonald C, Ounis I. A Deep Recurrent Collaborative Filtering Framework for Venue Recommendation[C]. The 2017 ACM on Conference on Information and Knowledge Management, Singapore, 2017
|
[64] |
Zhou F, Yin R, Zhang K, et al. Adversarial Point-of-Interest Recommendation[C]. The World Wide Web Conference, San Francisco, CA, USA, 2019
|
[65] |
刘真, 王娜娜, 王晓东, 等.位置社交网络中谱嵌入增强的兴趣点推荐算法[J].通信学报, 2020, 41(3):197-206 http://www.zhangqiaokeyan.com/academic-journal-cn_journal-communications_thesis/0201277952944.html
Liu Zhen, Wang Nana, Wang Xiaodong, et al. Spectral Clustering and Embedding-Enhanced POI Recommendation in Location-Based Social Network[J]. Journal on Communications, 2020, 41(3):197-206 http://www.zhangqiaokeyan.com/academic-journal-cn_journal-communications_thesis/0201277952944.html
|
[66] |
Zhang J, Shi X, Zhao S, et al. STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems[C]. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019
|
[67] |
Baral R, Zhu X, Iyengar S, et al. ReEL: Review Aware Explanation of Location Recommendation[C]. The 26th Conference on User Modeling, Adaptation and Personalization, Singapore, 2018
|
[68] |
Chang B, Park Y, Park D, et al. Content-Aware Hierarchical Point-of-Interest Embedding Model for Successive POI Recommendation[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018
|
[69] |
Zhao P, Zhu H, Liu Y, et al. Where to Go Next: A Spatio-Temporal Gated Network for Next POI Recommendation[C]. The AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, 2019
|
[70] |
Mazumdar P, Patra B K, Babu K S, et al. Hidden Location Prediction Using Check-in Patterns in Location-Based Social Networks[J]. Knowledge and Information Systems, 2018, 57(3):571-601 http://d.wanfangdata.com.cn/periodical/6118ef0419e7129ae1de69f5d5ca5ab3
|
[71] |
Lim K H, Chan J, Leckie C, et al. Personalized Trip Recommendation for Tourists Based on User Interests, Points of Interest Visit Durations and Visit Recency[J]. Knowledge and Information Systems, 2018, 54(2):375-406 doi: 10.1007/s10115-017-1056-y
|
[72] |
Cui W, Wang P, Du Y, et al. An Algorithm for Event Detection Based on Social Media Data[J]. Neurocomputing, 2017, 254:53-58 http://www.sciencedirect.com/science/article/pii/S0925231217304010
|
[73] |
Manotumruksa J, Macdonald C, Ounis I. Modelling User Preferences Using Word Embeddings for Context-Aware Venue Recommendation[OL]. https://arxiv.org/abs/1606.07828,2016
|
[74] |
Wang Y, Wang S, Tang J, et al. Unsupervised Sentiment Analysis for Social Media Images[C]. International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015
|
[75] |
Wang Y, Wang S, Tang J, et al. PPP: Joint Pointwise and Pairwise Image Label Prediction[C]. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016
|
[76] |
Wang Y, Wang S, Tang J, et al. CLARE: A Joint Approach to Label Classification and Tag Recommendation[C]. The 31st AAAI National Conference on Artificial Intelligence, San Francisco, California, USA, 2017
|
[77] |
Hays J, Efros A A. IM2GPS: Estimating Geographic Information from a Single Image[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008
|
[78] |
Liu B, Yuan Q, Cong G, et al. Where Your Photo is Taken: Geolocation Prediction for Social Images[J].Journal of the Association for Information Science and Technology, 2014, 65(6):1 232-1 243 doi: 10.1002/asi.23050/full
|
[79] |
Li X T, Pham T-A N, Cong G, et al. Where You Instagram?Associating Your Instagram Photos with Points of Interest[C]. The 24th ACM International Conference on Information and Knowledge Management, Melbourne, Australia, 2015
|
[80] |
Crandall D J, Backstrom L, Huttenlocher D, et al. Mapping the World's Photos[C]. The 18th International Conference on World Wide Web, Madrid, Spain, 2009
|
[81] |
Wang S, Wang Y, Tang J, et al. What Your Images Reveal: Exploiting Visual Contents for Point-of-Interest Recommendation[C].The 26th International Conference on World Wide Web, Perth, Australia, 2017
|
[82] |
Simonyan K, Zisserman A.Very Deep Convolutional Networks for Large-Scale Image Recognition[OL]. https://arxiv.org/abs/1409.1556,2014
|
[83] |
Liu Q, Wu S, Wang L, et al. Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts[C]. AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2016
|
[84] |
Manotumruksa J, Macdonald C, Ounis I. A Contextual Attention Recurrent Architecture for Context-Aware Venue Recommendation[C]. International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, MI, USA, 2018
|
[85] |
Kong D, Wu F. HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018
|
[86] |
Lu Y S, Shih W Y, Gau H Y, et al. On Successive Point-of-Interest Recommendation[J]. World Wide Web, 2019, 22(3):1 151-1 173 http://en.cnki.com.cn/Article_en/CJFDTotal-JSYJ201905040.htm
|
[87] |
Lu Y, Huang J. GLR: A Graph-Based Latent Representation Model for Successive POI Recommendation[J]. Future Generation Computer Systems, 2020, 102:230-244 http://www.sciencedirect.com/science/article/pii/S0167739X19303966
|
[88] |
Zhu Y, Li H, Liao Y, et al. What to Do Next: Modeling User Behaviors by Time-LSTM[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017
|
[89] |
Liu Q, Wu S, Wang D, et al. Context-Aware Sequential Recommendation[C]. IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 2016
|
[90] |
Zhou X, Mascolo C, Zhao Z. Topic-Enhanced Memory Networks for Personalised Point-of-Interest Recommendation[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, USA, 2019
|
[91] |
黄立威, 江碧涛, 吕守业, 等.基于深度学习的推荐系统研究综述[J].计算机学报, 2018, 41(7):1 619-1 647 http://www.cqvip.com/QK/90818X/20187/7000685958.html
Huang Liwei, Jiang Bitao, Lü Shouye, et al. Survey on Deep Learning Based Recommender Systems[J].Chinese Journal of Computers, 2018, 41(7):1 619-1 647 http://www.cqvip.com/QK/90818X/20187/7000685958.html
|
[92] |
王俊淑, 张国明, 胡斌.基于深度学习的推荐算法研究综述[J].南京师范大学学报(工程技术版), 2018, 18(4):39-49 http://d.wanfangdata.com.cn/periodical/njsfdxxb-gcjsb201804006
Wang Junshu, Zhang Guoming, Hu Bin. A Survey of Deep Learning Based Recommendation Algorithms[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2018, 18(4):39-49 http://d.wanfangdata.com.cn/periodical/njsfdxxb-gcjsb201804006
|
[93] |
常亮, 曹玉婷, 孙文平, 等.旅游推荐系统研究综述[J].计算机科学, 2017, 44(10):1-6 http://www.cnki.com.cn/Article/CJFDTotal-JSJA201710001.htm
Chang Liang, Cao Yuting, Sun Wenping, et al. Review on Tourism Recommendation System[J]. Computer Science, 2017, 44(10):1-6 http://www.cnki.com.cn/Article/CJFDTotal-JSJA201710001.htm
|
[94] |
Phatpicha Y, 常亮, 古天龙, 等.基于位置和开放链接数据的旅游推荐系统综述[J].智能系统学报, 2020, 15(1):25-32 http://www.cqvip.com/QK/92035A/202001/7101995922.html
Phatpicha Y, Chang Liang, Gu Tianlong, et al. A Review of Linked Open Data in Location-Based Recommendation System in the Tourism Domain[J]. CAAI Transactions on Intelligent Systems, 2020, 15(1):25-32 http://www.cqvip.com/QK/92035A/202001/7101995922.html
|
[95] |
孟祥武, 梁弼, 杜雨露, 等.基于位置的移动推荐系统效用评价研究[J].计算机学报, 2019, 42(12):2 695-2 721 http://www.cnki.com.cn/Article/CJFDTotal-JSJX201912007.htm
Meng Xiangwu, Liang Bi, Du Yulu, et al. A Survey of Evaluation for Location-Based Mobile Recommender Systems[J]. Chinese Journal of Computers, 2019, 42(12):2 695-2 721 http://www.cnki.com.cn/Article/CJFDTotal-JSJX201912007.htm
|
[96] |
Zhang L, Sun Z, Zhang J, et al. Modeling Hierarchical Category Transition for Next POI Recommendation with Uncertain Check-ins[J]. Information Sciences, 2020, 515:169-190 http://www.sciencedirect.com/science/article/pii/s0020025519311144
|
[97] |
Zhang L, Sun Z, Zhang J, et al. An Interactive Multi-task Learning Framework for Next POI Recommendation with Uncertain Check-ins[J]. CAL, 2020, 301(985):13 954 http://www.researchgate.net/publication/342797926_An_Interactive_Multi-Task_Learning_Framework_for_Next_POI_Recommendation_with_Uncertain_Check-ins
|
[98] |
Chen C, Wu B, Fang W, et al. Practical Privacy Preserving POI Recommendation[OL]. https://arxiv.org/abs/2003.02834,2020
|