ZENG Wenxian, LIU Zebang, FANG Xing, LI Yubing. Linearization Estimation Algorithm for Universal EIV Adjustment Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200243
Citation: ZENG Wenxian, LIU Zebang, FANG Xing, LI Yubing. Linearization Estimation Algorithm for Universal EIV Adjustment Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200243

Linearization Estimation Algorithm for Universal EIV Adjustment Model

Funds: 

The National Natural Science Foundation of China (Nos. 41674002,41774009), The Natural Science Foundation of Hubei province(No.2018CFB578)

More Information
  • Received Date: May 23, 2020
  • Available Online: September 26, 2023
  • The universal EIV model extends the EIV model to the most general form, and the weighted total least squares (WTLS) algorithm is proposed to take into account the random errors in observation vector, observation vector coefficient matrix and parameter coefficient matrix. In this paper, the nonlinear universal EIV function model is expanded, and the second-order term is included into the constant term of the model, so the universal EIV model is represented as Gauss-Helmert model in linear form, and the Linearized total least squares algorithm and approximate precision estimation formula of the universal EIV model are derived. Through the simulation data and examples, this algorithm is consistent with the estimation results of the WTLS algorithm of the universal EIV model, which verifies the correctness and feasibility of this algorithm. When the model contains a large number of estimators, the linearized estimation algorithm of the universal EIV model significantly improves the computational efficiency and converges faster.
  • [1]
    The Group of Surveying Adjustment in the School of Geodesy and Geomatics.Wuhan University.Error Theory and Foundation of Surveying Adjustment[M].Wuhan:Wuhan University Press, 2003.63-98(武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M]. 武汉:武汉大学出版社,2003. 63-98).
    [2]
    VAN HUFFEL S, VANDEWALLE J. The Total Least Squares Problem:Computational Aspects and Analysis[M]. Philadelphia:Society for Industrial and Applied Mathematics, 1991.
    [3]
    Adcock R J. Note on the Method of Least Squares[J]. The Analyst, 1877,4(6):183-184.
    [4]
    Golub G H, Loan C F V. An Analysis of the Total Least Squares Problem[M]//An analysis of the total least squares problem., 1980.
    [5]
    Van Huffel S, Vandewalle J. The Total Least Squares Problem:Computational Aspects and Analysis[M]. Philadelphia:SLAM,1991
    [6]
    Yunzhong Shen, Bofeng Li, Yi Chen. An iterative solution of weighted total least-squares adjustment[J]. Journal of Geodesy, 2011, 85(4):229-238.
    [7]
    FANG Xing. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8):733-749
    [8]
    Liu Jingnan, Zeng Wenxian, Xu Peiliang. Overview of Total Least Squares Methods[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):505-512. (刘经南, 曾文宪, 徐培亮. 整体最小二乘估计的研究进展[J]. 武汉大学学报·信息科学版, 2013, 38(5):505-512).
    [9]
    FANG Xing. A structured and constrained Total Least-Squares solution with cross-covariances [J]. Studia Geophysica Et Geodaetica, 2014, 58(1):1-16.
    [10]
    FANG Xing. On non-combinatorial weighted total least squares with inequality constraints[J]. Journal of Geodesy, 2014, 88(8):805-816.
    [11]
    FANG Xing. Weighted total least-squares with constraints:a universal formula for geodetic symmetrical transformations[J]. Journal of Geodesy, 2015, 89(5):459-469.
    [12]
    Zeng Wenxian,Liu Jinnan,Yao Yibin, On Partial Errors-in-variables Models with Inequality Constraints of Parameters and Variables, Journal of Geodesy, 2015.2.89(2):111~119.
    [13]
    XIE Jian, LONG Sichun, LI Li,et al. An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1526-1530(谢建, 龙四春, 李黎, 等. 不等式约束加权整体最小二乘的凝聚函数法[J]. 武汉大学学报·信息科学版, 2018, 43(10):1526-1530)
    [14]
    LI Sida, LIU Lintao, LIU Zhiping,et al. Robust Total Least Squares Method for Multivariable EIV Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8):1241-1248(李思达, 柳林涛, 刘志平,等. 多变量稳健总体最小二乘平差方法[J]. 武汉大学学报·信息科学版, 2019, 44(8):1241-1248).
    [15]
    Fang Xing, Zeng Wenxian, Zhou Yongjun, et al. On the Total Least Median of Squares adjustment for the pattern recognition in point clouds[J]. Measurement, 2020:107794.
    [16]
    XU Peiliang, LIU Jingnan, SHI, Chuang. Total least squares adjustment in partial Errors-in-variables models:algorithm and statistical analysis. Journal of geodesy, 2012, 86(8):661-675.
    [17]
    ZENG Wenxian, FANG Xing, LIU Jingnan,et al. Weighted Total Least Squares of Universal EIV Adjustment Model. Acta Geodaetica et Cartographica Sinica,2016, 45(8):890-894(曾文宪, 方兴, 刘经南,等. 通用EIV平差模型及其加权整体最小二乘估计[J]. 测绘学报, 2016, 45(8):890-894).
    [18]
    Amiri-Simkooei A R, Mortazavi S, Asgari J. Weighted total least squares applied to mixed observation model[J]. Empire Survey Review, 2015, 48(349):278-286.
    [19]
    ZENG Wenxian, TAO Benzao. Nonlinear model of three-dimensional coordinate transformation. Geomatics and Information Science of Wuhan University.2003, 28(5):566-568(曾文宪, 陶本藻. 三维坐标转换的非线性模型[J]. 武汉大学学报(信息科学版), 2003, 28(5):566-568).
    [20]
    ZENG Wenxian. Effect of the random design matrix on adjustment of an EIV model and its reliability theory[D].WuHan:WuHan University. 2013(曾文宪. 系数矩阵误差对EIV模型平差结果的影响研究[D].武汉:武汉大学, 2013).
    [21]
    Leberl F. Observations and Least Squares:Edward M. Mikhail, with contributions by F. Ackermann. Dun-Donelly, New York, N.Y. 1976, 497 pp. hard cover, U.S[J]. Photogrammetria, 1978, 34(6):261-262.
  • Related Articles

    [1]GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
    [2]SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
    [5]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [6]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [7]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [8]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [9]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(10)

    1. 黄观文,曹钰,谭粤,谢威. GNSS星载原子钟在轨性能评估技术进展. 测绘地理信息. 2024(01): 20-28 .
    2. 蒋春华,朱美珍,薛慧杰,刘广盛. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报. 大地测量与地球动力学. 2024(03): 257-262 .
    3. 艾孝军,孙大伟,贾小林,郭栋,彭腾. GNSS星载原子钟性能评估与噪声分析模型算法研究. 无线电工程. 2023(05): 1041-1051 .
    4. 李方能,梁益丰,许江宁,吴苗. BDS/GPS新型铷原子钟长期特性分析. 中国惯性技术学报. 2023(05): 452-461 .
    5. 张润哲,刘雪娇,王全喜. 基于方位导引的无人僚机着舰进近引导技术研究. 现代导航. 2023(06): 416-421 .
    6. 龚明杰. GPS与GLONASS多频组合伪距单点定位精度分析. 测绘与空间地理信息. 2022(02): 115-117+122 .
    7. 樊礼谦,焦文海,蔡洪亮,周巍,徐颖,周舒涵. 北斗三号卫星钟长期稳定性分析. 导航定位学报. 2022(04): 11-19 .
    8. 李特,张为成,王建敏,李秀海. 基于不同评价指标的北斗星载原子钟特性分析. 黑龙江工程学院学报. 2022(04): 1-7 .
    9. 伏军胜,贾小林,刘家龙,许瑾,贺延伟,张奋. BDS-3卫星与其他GNSS系统卫星原子钟性能分析. 真空与低温. 2022(05): 615-622 .
    10. 齐艳丽. 北斗星载原子钟频率稳定度评估. 科技视界. 2022(29): 83-85 .

    Other cited types(11)

Catalog

    Article views (1483) PDF downloads (503) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return