WANG Yong, LIU Xiao, LIU Yanping, ZHAN Wei. MODIS PWV Correction Based on CMONOC and Regional Function Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 224-231. DOI: 10.13203/j.whugis20200183
Citation: WANG Yong, LIU Xiao, LIU Yanping, ZHAN Wei. MODIS PWV Correction Based on CMONOC and Regional Function Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 224-231. DOI: 10.13203/j.whugis20200183

MODIS PWV Correction Based on CMONOC and Regional Function Model

More Information
  • Received Date: April 18, 2021
  • Available Online: February 16, 2023
  • Published Date: February 04, 2023
  •   Objectives  Using moderate-resolution imaging spectroradiometer (MODIS) can detect high spatial resolution but low precision precipitable water vapor (PWV), while global navigation satellite system (GNSS) can retrieve high precision but low spatial resolution PWV, in order to get high spatial resolution and precision PWV, it is necessary to integrate two kinds of data.
      Methods  Taking Chinese mainland as an example, MODIS PWV was done the correction based on GNSS observation and meteorological data provided by crustal movement observation network of China(CMONOC). Firstly, considering the geographical environment, altitude, climate type and other factors, Chinese mainland was divided into 16 regions, and the correlation analysis of regional MODIS PWV and GNSS PWV was carried out. And then, it was constructed for the correction-model of MODIS PWV by different regions and seasons based on GNSS PWV. After that, the regional model result, the single site model result and the measured GNSS PWV were compared to test the reliability of the model. Finally, MODIS PWV distribution in Chinese mainland can be obtained by MODIS PWV correction and image superposition.
      Results  The results show that the accuracy of the regional MODIS PWV correction model is similar to that of the single-site model, which can replace the single-site model for MODIS PWV correction.
      Conclusions  The MODIS PWV correction model of different regions can be used to effectively improve the precision of MODIS PWV. It can be used for providing reference for short-term weather prediction and interferometric synthetic aperture radar atmospheric correction.
  • [1]
    张卫星. 中国区域融合地基GNSS等多种资料水汽反演、变化分析及应用[D]. 武汉: 武汉大学, 2016.

    Zhang Weixing. Water Vapor Retrieval, Variation Analysis and Applications over China Using Ground-Based GNSS and Multiple Data[D]. Wuhan, China: Wuhan University, 2016
    [2]
    王江涛, 邓喀中, 范洪冬, 等. 基于MODIS与GPS的D-InSAR大气延迟改正量提取[J]. 测绘科学技术学报, 2012, 29(4): 271-275. doi: 10.3969/j.issn.1673-6338.2012.04.009

    Wang Jiangtao, Deng Kazhong, Fan Hongdong, et al. Extraction of D-InSAR Atmospheric Delay Correction Based on MODIS and GPS[J]. Journal of Geomatics Science and Technology, 2012, 29(4): 271-275 doi: 10.3969/j.issn.1673-6338.2012.04.009
    [3]
    鄢子平, 李振洪. InSAR大气水汽改正模型的比较应用研究[J]. 武汉大学学报(信息科学版), 2008, 33(7): 723-726. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200807015.htm

    Yan Ziping, Li Zhenhong. Comparison of Atmospheric Water Vapour Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 723-726 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200807015.htm
    [4]
    Zhu J, Chang Z, Li X, et al. An Improved Atmospheric Correction Method in Repeat-Pass InSAR Measurements[J]. International Journal of Remote Sensing, 2018, 39(21): 7276-7292. doi: 10.1080/01431161.2018.1468112
    [5]
    王勇, 柳林涛, 许厚泽, 等. 利用GPS技术反演中国大陆水汽变化[J]. 武汉大学学报(信息科学版), 2007, 32(2): 152-155. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200702015.htm

    Wang Yong, Liu Lintao, Xu Houze, et al. Retrieving Change of Precipitable Water Vapor in Chinese Mainland by GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 152-155 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200702015.htm
    [6]
    赵庆志. 地基GNSS水汽反演关键技术研究及其应用[D]. 武汉: 武汉大学, 2017.

    Zhao Qingzhi. Studies on the Key Technologies in Water Vapor Inversion Using Ground-Based GNSS and Its Applications[D]. Wuhan: Wuhan University, 2017
    [7]
    赵庆志, 姚宜斌, 罗亦泳. 附加辅助层析区域提高射线利用率的水汽反演方法[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1203-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201709003.htm

    Zhao Qingzhi, Yao Yibin, Luo Yiyong. A Method to Improve the Utilization of Observation for Water Vapor Tomography by Adding Assisted Tomographic Area[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1203-1208 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201709003.htm
    [8]
    施闯, 王海深, 曹云昌, 等. 基于北斗卫星的水汽探测性能分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 285-289. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201603001.htm

    Shi Chuang, Wang Haishen, Cao Yunchang, et al. Analysis on Performance of Water Vapor Detection Based on BeiDou Satellite[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 285-289 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201603001.htm
    [9]
    Ware R, Rocken C, Solheim F, et al. Pointed Water Vapor Radiometer Corrections for Accurate Global Positioning System Surveying[J]. Geophysical Research Letters, 1993, 20(23): 2635-2638. doi: 10.1029/93GL02936
    [10]
    Yao Y, Shan L, Zhao Q. Establishing a Method of Short-Term Rainfall Forecasting Based on GNSS-Derived PWV and Its Application[J]. Scientific Reports, 2017, 7(1): 12465. doi: 10.1038/s41598-017-12593-z
    [11]
    Wang Y, Liu Y P, Liu L T, et al. Retrieval of the Change of Precipitable Water Vapor with Zenith Tropospheric Delay in Chinese Mainland[J]. Advances in Space Research, 2009, 43(1): 82-88. doi: 10.1016/j.asr.2007.07.050
    [12]
    Gurbuz G, Jin S G. Long-Time Variations of Precipitable Water Vapour Estimated from GPS, MODIS and Radiosonde Observations in Turkey[J]. International Journal of Climatology, 2017, 37(15): 5170-5180. doi: 10.1002/joc.5153
    [13]
    Oliveira G, Brunsell N A, Moraes E C, et al. Evaluation of MODIS-Based Estimates of Water-Use Efficiency in Amazonia[J]. International Journal of Remote Sensing, 2017, 38(19): 5291-5309. doi: 10.1080/01431161.2017.1339924
    [14]
    Gokhan G, Jin S. Long-Term Variations of Precipitable Water Vapor Estimated from GPS, MODIS and Radiosonde Observations in Turkey[J]. International Journal of Climatology, 2017, 37(15): 5170-5180. doi: 10.1002/joc.5153
    [15]
    Gui K, Che H Z, Chen Q L, et al. Evaluation of Radiosonde, MODIS-NIR-Clear, and AERONET Precipitable Water Vapor Using IGS Ground-Based GPS Measurements over China[J]. Atmospheric Research, 2017, 197(11): 461-473.
    [16]
    方圣辉, 毕创, 乐源, 等. 利用GPS可降水量校正MODIS近红外水汽数据[J]. 测绘科学, 2016, 41(9): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201609009.htm

    Fang Shenghui, Bi Chuang, Le Yuan, et al. Calibration of MODIS near Infrared Vapor Products Using Precipitable Water Vapor Retrieved from GPS Data[J]. Science of Surveying and Mapping, 2016, 41(9): 38-41 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201609009.htm
    [17]
    王勇, 董思思, 刘严萍, 等. 区域MODIS水汽季节修正模型[J]. 遥感信息, 2020, 35(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX202001002.htm

    Wang Yong, Dong Sisi, Liu Yanping, et al. Seasonal Corrected Model of Regional MODIS Precipitable Water Vapor[J]. Remote Sensing Information, 2020, 35(1): 9-14 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX202001002.htm
    [18]
    刘备, 王勇, 娄泽生, 等. CMONOC观测约束下的中国大陆地区MODIS PWV校正[J]. 测绘学报, 2019, 48(10): 1207-1215. doi: 10.11947/j.AGCS.2019.20180386

    Liu Bei, Wang Yong, Lou Zesheng, et al. The MODIS PWV Correction Based on CMONOC in Chinese Mainland[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1207-1215 doi: 10.11947/j.AGCS.2019.20180386
    [19]
    燕振宁, 马学谦. 青海高原不同地区大气水汽含量对比分析[J]. 干旱气象, 2018, 36(3): 365-372. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201803003.htm

    Yan Zhenning, Ma Xueqian. Comparison and Analysis of Precipitable Water Vapor in Different Regions of the Qinghai Plateau[J]. Journal of Arid Meteorology, 2018, 36(3): 365-372 https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201803003.htm
    [20]
    王笑蕾, 张勤, 张双成. 基于EMD和WD联合算法的GPS水汽时间序列的周期性振荡分析[J]. 武汉大学学报(信息科学版), 2018, 43(4): 620-628. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201804020.htm

    Wang Xiaolei, Zhang Qin, Zhang Shuangcheng. Periodic Oscillation Analysis of GPS Water Vapor Time Series Using Combined Algorithm Based on EMD and WD[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 620-628 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201804020.htm
    [21]
    蒋捷, 杨昕. 基于DEM中国地势三大阶梯定量划分[J]. 地理信息世界, 2009, 7(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK200901006.htm

    Jiang Jie, Yang Xin. Quantitative Segmentation of the Three Gradient Terrain of China Based on DEM[J]. Geomatics World, 2009, 7(1): 8-13 https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK200901006.htm
    [22]
    Bevis M, Businger S, Chiswell S, et al. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water[J]. Journal of Applied Meteorology, 1994, 33(3): 379-386.
    [23]
    Zhang W, Lou Y, Huang J, et al. Multiscale Variations of Precipitable Water over China Based on 1999—2015 Ground-Based GPS Observations and Evaluations of Reanalysis Products[J]. Journal of Climate, 2018, 31(3): 945-962.
    [24]
    李成, 黄秋燕, 覃志豪. CE-318太阳光度计及探空数据反演水汽含量与MODIS近红外水汽产品对比[J]. 地球信息科学学报, 2017, 19(7): 994-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201707017.htm

    Li Cheng, Huang Qiuyan, Qin Zhihao. Comparison of Water Vapor Content Product Retrieved by CE-318 Sun-Photometer, Radiosonde Data and MODIS near Infrared Data[J]. Journal of Geo‑Information Science, 2017, 19(7): 994-1000 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201707017.htm
    [25]
    肖潺, 原韦华, 李建, 等. 南海秋雨气候特征分析[J]. 气候与环境研究, 2013, 18(6): 693-700. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201306002.htm

    Xiao Chan, Yuan Weihua, Li Jian, et al. Preliminary Study of Autumn Rain in the South China Sea[J]. Climatic and Environmental Research, 2013, 18(6): 693-700 https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201306002.htm
  • Related Articles

    [1]HU Zhuoming, YUAN Haijun, HE Xiufeng, ZHANG Zhetao, WANG Jin. Influence of MGEX Differential Code Bias Products on BDS-3 Pseudorange Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 756-764. DOI: 10.13203/j.whugis20210454
    [2]WANG Yan, ZHANG Chuanding, HU Xiaogong, ZHU Lingfeng, FENG Wei, CHANG Zhiqiao. Sidereal Filtering Based on Sphere Multipath Stacking and Its Application in PPP[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1496-1503. DOI: 10.13203/j.whugis20160454
    [3]ZHANG Xiaohong, PAN Yuming, ZUO Xiang, WANG Jie. An Improved Robust Kalman Filtering and Its Application in PPP[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 858-864. DOI: 10.13203/j.whugis20130577
    [4]Li Kaifeng, Ouyang Yongzhong, Lu Xiuping, Xu Weiming. Application of Precise Point Positioning for Island Control Survey[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 412-416.
    [5]SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781.
    [6]ZHANG Xiaohong, LI Xingxing, GUO Fei, ZHANG Ming. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 783-787.
    [7]WU Yun, GUO Jiming, SUN Haiyan. Application of Sequential Fimtering in GPS Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 31-34.
    [8]ZHANGXiaohong, LIUJingnan, ReneForsberg. Application of Precise Point Positioning in Airborne Survey[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 19-22.
    [9]Shi Pinhao. An Investigation Into The Operation Modes for GPS Positioning[J]. Geomatics and Information Science of Wuhan University, 1992, 17(2): 18-28.
    [10]Du Zhiqin. A Simulated Analysis of the Application of GPS in Oceanographic Surveying[J]. Geomatics and Information Science of Wuhan University, 1989, 14(1): 20-26.
  • Cited by

    Periodical cited type(5)

    1. 牛统莉,熊立华,陈杰,周研来,尹家波,刘德地. 基于PLUS模型的长江流域土地利用变化模拟与多情景预测. 武汉大学学报(工学版). 2024(02): 129-141+151 .
    2. 童童,丁琪洵,蔡天培,汤萌萌,史习建,马友华. 安徽省试点县补充耕地质量监测与评价. 环境监测管理与技术. 2024(02): 32-37 .
    3. 李嘉寅,陈平,蔡宝昌,王秋香,李建华,徐若怡,宋晓,张晖. 垦造水田防渗层快速构建工艺研究——以韶关与清远为例. 仲恺农业工程学院学报. 2024(02): 53-59+65 .
    4. 苏建聪,唐斌,刘杨,蒋文杰. 基于FLUS模型的巴中市多情景土地利用变化模拟及其生态系统服务价值评估. 环境生态学. 2023(11): 17-25 .
    5. 陈国海. 珠海市近20年土地利用及景观格局变化分析. 北京测绘. 2023(12): 1632-1637 .

    Other cited types(12)

Catalog

    Article views (479) PDF downloads (84) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return