LUO Fang, AI Tinghua, JIA Xiaobin. Consistency Evaluation of Land Use Distribution Pattern Supported by Spatial Autocorrelation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1017-1024. DOI: 10.13203/j.whugis20200179
Citation: LUO Fang, AI Tinghua, JIA Xiaobin. Consistency Evaluation of Land Use Distribution Pattern Supported by Spatial Autocorrelation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1017-1024. DOI: 10.13203/j.whugis20200179

Consistency Evaluation of Land Use Distribution Pattern Supported by Spatial Autocorrelation

Funds: 

The Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources KF-2020-05-0076

More Information
  • Author Bio:

    LUO Fang, PhD, senior engineer, specializes in surveying and mapping data quality. E-mail: whulfgis@163.com

  • Corresponding author:

    JIA Xiaobin, PhD. E-mail: jiaxiaobin_123@126.com

  • Received Date: April 06, 2021
  • Published Date: July 04, 2022
  •   Objectives  The consistency of spatial distribution pattern before and after generalization is an important factor to evaluate the quality of land use data. Considering the lack of quantitative analysis and visualization in spatial distribution model evaluation of data, we put forward a new evaluation method based on the unique autocorrelation of spatial data.
      Methods  Firstly, we establish the spatial weight matrix using the semantic distance of data and calculate global and local autocorrelation of data before and after processing by Moran's I index. Secondly, we use Moran scatter plot and LISA (local indicators of spatial association) aggregation map to visualize the quality of spatial distribution patterns.
      Results  Compared with the traditional data quality evaluation method, the proposed method can better evaluate the consistency of spatial distribution pattern of global map by taking into account the semantic relation of the data, obtaining the quantifiable aggregation degree and contrasting by the visual method.
      Conclusions  In cognitive experiments, we take the land type data been scale transformed which cause data quality problems mostly as an example. The experimental results accord with human cognitions and the experimental method is practical.
  • [1]
    Bader M, Weibel R. Detecting and Resolving Size and Proximity Conflicts in the Generalization of Polygonal Maps[C]//The 18th International Cartographic Conference, Stockholm, Sweden, 1997
    [2]
    GoodChild M. Attribute Accuracy[M]//Guptill S C, Morrison J L. Elements of Spatial Data Quality. Oxford: Progamon, 1995
    [3]
    钱海忠, 武芳, 张琳琳, 等. 基于极化变换的点群综合几何质量评估[J]. 测绘学报, 2005, 34 (4): 361-369 doi: 10.3321/j.issn:1001-1595.2005.04.014

    Qian Haizhong, Wu Fang, Zhang Linlin, et al. Quality Assessment of Point Group Geometry Generalization with Polarization Transformation[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(4): 361-369 doi: 10.3321/j.issn:1001-1595.2005.04.014
    [4]
    刘鹏程. 形状识别在地图综合中的应用研究[D]. 武汉: 武汉大学, 2009

    Liu Pengcheng. Applications of Shape Recognition in Map Generalization[D]. Wuhan: Wuhan University, 2009
    [5]
    刘涛, 杜清运, 闫浩文. 空间点群目标相似度计算[J]. 武汉大学学报·信息科学版, 2011, 36(10): 1150-1153 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201110003.htm

    Liu Tao, Du Qingyun, Yan Haowen. Spatial Similarity Assessment of Point Clusters[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1150-1153 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201110003.htm
    [6]
    艾廷华, 杨帆, 李精忠. 第二次土地资源调查数据建库中的土地利用图综合缩编[J]. 武汉大学学报·信息科学版, 2010, 35(8): 9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201008001.htm

    Ai Tinghua, Yang Fan, Li Jingzhong. Land-Use Data Generalization for the Database Construction of the Second Land Resource Survey[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201008001.htm
    [7]
    罗芳. 土地利用数据综合结果的质量评价[D]. 武汉: 武汉大学, 2013

    Luo Fang. Quality Evaluation for Land-Use Data Generalization[D]. Wuhan: Wuhan University, 2013
    [8]
    贾小斌. 地图综合的智能体技术: 以土地利用图斑综合为例[D]. 武汉: 武汉大学, 2013

    Jia Xiaobing. Agent Technology Applied in Map Generalization: Case Study for Land-Use Patch[D]. Wuhan: Wuhan University, 2013
    [9]
    黄万里, 李虎, 林广发, 等. 尺度变化的土地利用类型数据的综合研究[J]. 地球信息科学学报, 2010, 12(3): 329-335 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201003005.htm

    Huang Wanli, Li Hu, Lin Guangfa, et al. A Comprehensive Study of Land Use Type Data of Scale Change[J]. Journal of Geo-informatin Science, 2010, 12(3): 329-335 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201003005.htm
    [10]
    刘耀林, 焦利民. 顾及尺度效应和景观格局的土地利用数据综合指标研究[J]. 测绘学报, 2009, 38(6): 549-555 doi: 10.3321/j.issn:1001-1595.2009.06.014

    Liu Yaolin, Jiao Limin. Land Use Data Generalization Indices Based on Scale and Landscape Pattern [J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(6): 549-555 doi: 10.3321/j.issn:1001-1595.2009.06.014
    [11]
    石志宽, 汤国安. 土地利用现状数据缩编的质量评价方法[J]. 地理研究, 2011, 30(2): 233-242 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201102003.htm

    Shi Zhikuan, Tang Guoan. Quality Assessment of Land Use Data Generalization[J]. Geographical Research, 2011, 30(2): 233-242 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201102003.htm
    [12]
    Anselin L. Spatial Econometrics: Methods and Models[M]. Netherlands: Kluwer Academic Publishers, 1988
    [13]
    赵永. 空间数据统计分析的思想起源与应用演化[J]. 地理研究, 2018, 37(10): 2059-2074 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201810015.htm

    Zhao Yong. The Origin and Application History of Statistical Analysis of Spatial Data[J]. Geographical Research, 2018, 37(10): 2059-2074 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201810015.htm
    [14]
    韩春萌, 刘慧平, 张洋华, 等. 基于核密度函数的多尺度北京市休闲农业空间分布分析[J]. 农业工程学报, 2019, 35(6): 271-278 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906033.htm

    Han Chunmeng, Liu Huiping, Zhang Yanghua. et al. Multi-scale Spatial Distribution Analysis of Leisure Agriculture in Beijing Based on Kernel Density Estimation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 271-278 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906033.htm
    [15]
    蒋波涛, 王艳东, 叶信岳. 使用点评数据探测城市商业服务设施的发展规律[J]. 测绘学报, 2015, 44(9): 1022-1028 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201509012.htm

    Jiang Botao, Wang Yandong, Ye Xinyue. Detecting Development Pattern of Urban Business Facilities Using Reviews Data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 1022-1028 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201509012.htm
    [16]
    Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J], Economic Geography, 1970, 46: 234-240 doi: 10.2307/143141
    [17]
    Hubert L J, Golledge R G, Costanzo C M. Generalized Procedures for Evaluating Spatial Autocorrelation [J]. Geographical Analysis, 1981, 13(3): 224-233
    [18]
    马荣华, 蒲英霞, 马晓冬. GIS空间关联模式发现[M]. 北京: 科学出版社, 2007

    Ma Ronghua, Pu Yingxia, Ma Xiaodong. GIS Spatial Association Pattern Discovery[M]. Beijing: Science Press, 2007
    [19]
    张可云, 王裕瑾, 王婧. 空间权重矩阵的设定方法研究[J]. 区域经济评论, 2017(1): 19-25 https://www.cnki.com.cn/Article/CJFDTOTAL-QYHL201701005.htm

    Zhang Keyun, Wang Yujin, Wang Jing. Research on the Specification Methods of Spatial Weight Matrix[J]. Regional Economic Review, 2017(1): 19-25 https://www.cnki.com.cn/Article/CJFDTOTAL-QYHL201701005.htm
    [20]
    张永树, 王培. 基于多种空间权重矩阵的区域经济空间自相关分析: 以河南省为例[J]. 测绘与空间地理信息, 2020, 43(1): 45-49 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202001015.htm

    Zhang Yongshu, Wang Pei. Regional Economic Spatial Autocorrelation Analysis Based on Multiple Spatial Weight Matrices: A Case Study of Henan Province[J]. Geomatics and Spatial Information Technology, 2020, 43(1): 45-49 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202001015.htm
    [21]
    Cliff A, Ord J. Spatial Processes: Models and Applications[M]. London: Pion, 1981
  • Related Articles

    [1]ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479.
    [4]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [5]AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54.
    [6]LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358.
    [7]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [8]WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487.
    [9]ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399.
    [10]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return