PENG Fei, WANG Zhong, MENG Qingxu, PAN Xiong, QIU Fengqin, YANG Yufeng. Application of EM Algorithm in Parameter Estimation of p-Norm Mixture Model[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1432-1438. DOI: 10.13203/j.whugis20200172
Citation: PENG Fei, WANG Zhong, MENG Qingxu, PAN Xiong, QIU Fengqin, YANG Yufeng. Application of EM Algorithm in Parameter Estimation of p-Norm Mixture Model[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1432-1438. DOI: 10.13203/j.whugis20200172

Application of EM Algorithm in Parameter Estimation of p-Norm Mixture Model

Funds: 

The National Natural Science Foundation of China 42174010

The National Natural Science Foundation of China 41874009

More Information
  • Author Bio:

    PENG Fei, PhD, associate professor, specializes in ship building technology and ship overall design research. E-mail: pengfei75@qq.com

  • Corresponding author:

    WANG Zhong, PhD, lecturer. E-mail: wangzhonghj@sohu.com

  • Received Date: April 16, 2020
  • Available Online: September 19, 2022
  • Published Date: September 04, 2022
  •   Objectives  Aiming at the mixed observation data of multiple distribution forms, a expectation-maximum (EM) combined p-norm distributed model(EM_p) is established.
      Methods  Considering that the mixed number in the mixture model belongs to incomplete data, the EM algorithm is introduced to estimate the parameters of the mixture model and the p-model mixture model parameters are derived in detail. The estimated iteration formula and the corresponding iteration steps are given.The mixture Gaussian distribution data, Laplace distribution and Gaussian distribution mixture data, and the residual data of measured global positioning system(GPS) observations are used to verify the correctness and adaptability of the formula in this paper.
      Results and Conclusions  The results of the calculation examples show that, compared with the single probability distribution, the p-norm mixture model can accurately reflect the actual situation of the data distribution, and the model parameters estimated by the EM algorithm have higher accuracy.
  • [1]
    潘雄. 半参数模型的估计理论及其应用[D]. 武汉: 武汉大学, 2005

    Pan Xiong. The Estimation Theory and Application Research in Semi-Parametric Model[D]. Wuhan: Wuhan University, 2005
    [2]
    潘雄, 程少杰, 赵春茹. 一元p范分布的参数快速估计方法[J]. 武汉大学学报·信息科学版, 2010, 35(2): 189-192 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201002017.htm

    Pan Xiong, Cheng Shaojie, Zhao Chunru. A Fast Parameter Estimation in p-Norm Distribution[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 189-192 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201002017.htm
    [3]
    孙海燕. p范分布理论及其在现代测量数据处理中的应用[D]. 武汉: 武汉测绘科技大学, 1995

    Sun Haiyan. p-Distribution Theory and Its Application in Modern Survey Data Processing[D]. Wuhan: Wuhan University of Surveying and Mapping, 1995
    [4]
    Booth J G, Hobert J P. Maximizing Generalized Linear Mixed Model Likelihoods with an Automated Monte Carlo EM Algorithm[J]. Journal of the Royal Statistical Society, 1999, 61(1): 265-285 doi: 10.1111/1467-9868.00176
    [5]
    连军艳. EM算法及其改进在混合模型参数估计中的应用研究[D]. 西安: 长安大学, 2006

    Lian Junyan. The Application Research of EM Algorithm and Its Improvement in Mixed Model Parameter Estimation[D]. Xi'an: Chang'an University, 2006
    [6]
    Tuaç Y, Güney Y, Arslan O. Parameter Estimation of Regression Model with AR(p)Error Terms Based on Skew Distributions with EM Algorithm [J]. Soft Computing, 2020, 24(5): 3309-3330 doi: 10.1007/s00500-019-04089-x
    [7]
    吴柯, 何坦, 杨叶涛. 基于混合像元分解与EM算法的中低分辨率遥感影像变化检测[J]. 武汉大学学报·信息科学版, 2019, 44(4): 555-562 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201904012.htm

    Wu Ke, He Tan, Yang Yetao. Change Detection Method Based on Pixel Unmixing and EM Algorithm for Low and Medium Resolution Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 555-562 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201904012.htm
    [8]
    肖琴琴, 宋迎春, 杜琨. EM算法在广播星历计算卫星位置中的应用[J]. 测绘工程, 2013, 22 (6): 73-76 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201306020.htm

    Xiao Qinqin, Song Yingchun, Du Kun. Application of EM Algorithm to the Calculation of the Satellite Position Based on Broadcast Ephemeris[J]. Engineering of Surveying and Mapping, 2013, 22(6): 73-76 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201306020.htm
    [9]
    鲁纳纳, 余旌胡. EM算法的参数分辨率[J]. 数学物理学报, 2019, 39(3): 638-648 doi: 10.3969/j.issn.1003-3998.2019.03.021

    Lu Nana, Yu Jinghu. Research on Resolution Based on EM Algorithm[J]. Acta Mathematica Scientia, 2019, 39(3): 638-648 doi: 10.3969/j.issn.1003-3998.2019.03.021
    [10]
    赵杨璐, 段丹丹, 胡饶敏, 等. 基于EM算法的混合模型中子总体个数的研究[J]. 数理统计与管理, 2020, 39 (1): 35-50 https://www.cnki.com.cn/Article/CJFDTOTAL-SLTJ202001005.htm

    Zhao Yanglu, Duan Dandan, Hu Raomin, et al. On the Number of Components in Mixture Model Based on EM Algorithm[J]. Journal of Applied Statistics and Management, 2020, 39(1): 35-50 https://www.cnki.com.cn/Article/CJFDTOTAL-SLTJ202001005.htm
    [11]
    李仁忠, 张缓缓, 景军锋, 等. 基于EM算法的高斯混合型的织物疵点检测研究[J]. 计算机工程与应用, 2014, 50(10): 184-187 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201410040.htm

    Li Renzhong, Zhang Huanhuan, Jing Junfeng, et al. Fabric Defect Detection Based on Gaussian Mixture Models of EM Algorithm[J]. Computer Engineering and Applications, 2014, 50(10): 184-187 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201410040.htm
    [12]
    冯杭, 王胜兵. 基于EM算法的离散-连续型混合分布参数估计[J]. 统计与决策, 2019, 35(3): 85-88 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201903020.htm

    Feng Hang, Wang Shengbing. Discrete-Continuous Mixed Distribution Parameter Estimation Based on EM Algorithm[J]. Statistics & Decision, 2019, 35 (3): 85-88 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201903020.htm
    [13]
    Guo X, Li Q Y, Xu W L. Acceleration of the EM Algorithm Using the Vector Aitken Method and Its Steffensen Form[J]. Acta Mathematicae Applicatae Sinica, English Series, 2017, 33(1): 175-182
    [14]
    潘雄, 赵启龙, 王俊雷, 等. 一元非对称p范分布的极大似然平差[J]. 测绘学报, 2011, 40(1): 33-36 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201101009.htm

    Pan Xiong, Zhao Qilong, Wang Junlei, et al. Maximum Likelihood Adjustment of the Monadic Unsym metrical P-Norm Distribution[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1): 33-36 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201101009.htm
    [15]
    潘雄, 罗静, 汪耀. p范分布的实数阶与对数矩估计法[J]. 测绘学报, 2016, 45(3): 302-309 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201603009.htm

    Pan Xiong, Luo Jing, Wang Yao. Real Order and Logarithmic Moment Estimation Method of p-Norm Distribution[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 302-309 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201603009.htm
  • Related Articles

    [1]ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479.
    [4]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [5]AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54.
    [6]LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358.
    [7]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [8]WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487.
    [9]ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399.
    [10]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views (1023) PDF downloads (65) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return