ZHOU Qu, LIU Jianqiang, WANG Jianru, DENG Shiquan, TIAN Liqiao. Water Turbidity Monitoring of Zhiyin and Huangjia Lakes in Wuhan for COVID-19 Epidemic Using HY-1C CZI Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 676-681. DOI: 10.13203/j.whugis20200101
Citation: ZHOU Qu, LIU Jianqiang, WANG Jianru, DENG Shiquan, TIAN Liqiao. Water Turbidity Monitoring of Zhiyin and Huangjia Lakes in Wuhan for COVID-19 Epidemic Using HY-1C CZI Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 676-681. DOI: 10.13203/j.whugis20200101

Water Turbidity Monitoring of Zhiyin and Huangjia Lakes in Wuhan for COVID-19 Epidemic Using HY-1C CZI Data

Funds: 

The National Key Research and Development Program of China 2018YFB0504900

The National Key Research and Development Program of China 2018YFB0504904

The National Key Research and Development Program of China 2016YFC0200900

the National Natural Science Foundation of China 41571344

the National Natural Science Foundation of China 41701379

More Information
  • Author Bio:

    ZHOU Qu, postgraduate, specializes in ocean color remote sensing and satellite cross-calibration. E-mail:quzhou@whu.edu.cn

  • Corresponding author:

    TIAN Liqiao, PhD, professor. E-mail: tianliqiao@whu.edu.cn

  • Received Date: March 20, 2020
  • Available Online: July 26, 2023
  • Published Date: May 04, 2020
  • Water turbidity is one of the most important parameters of inland lake water quality and an important influencing factor of water environment ecosystem.Affected by coronavirus disease 2019(COVID-19) epidemic, during the period from January 25, 2020 to February 5, 2020, Wuhan government built two emergency hospitals, namely Huoshenshan Hospital and Leishenshan Hospital, to cope with the epidemic. In the process of hospital construction, dynamic monitoring of turbidity in the adjacent waters is helpful for epidemic prevention and government decision-making. Using Chinese high-resolution Haiyang-1C (HY-1C) coastal zone imager (CZI) data, combined with high-frequency in-situ turbidity measurements, a turbidity model uitable for Wuhan waters is established (determinant coefficient: R2>0.85; root mean square error: RMSE < 5.50 NTU). Through the analysis of the variations of turbidity at Zhiyin, Huangjia, and Zhushan lakes before, during, and after constructions of Huoshenshan or Leishenshan hospitals, we find out that the variation trends of waters near and away from Huoshenshan or Leishenshan hospitals are similar, which indicates that the constructions of the two hospitals doesn't affect the nearby waters. This study also shows that Chinese HY-1C CZI has the potential to retrieve turbidity in small inland waters.
  • [1]
    Nechad B, Ruddick K G, Park Y. Calibration and Validation of a Generic Multisensor Algorithm for Mapping of Total Suspended Matter in Turbid Waters[J]. Remote Sensing of Environment, 2010, 114(4):854-866 doi: 10.1016/j.rse.2009.11.022
    [2]
    Jayson-Quashigah P N, Appeaning A K, Amisigo B, et al. Assessment of Short-Term Beach Sediment Change in the Volta Delta Coast in Ghana Using Data from Unmanned Aerial Vehicles (Drone)[J]. Ocean and Coastal Management, 2019, 182: 104952-104966 doi: 10.1016/j.ocecoaman.2019.104952
    [3]
    Dogliotti A I, Ruddick K G, Nechad B, et al. A Single Algorithm to Retrieve Turbidity from Remotely-Sensed Data in All Coastal and Estuarine Waters[J]. Remote Sensing of Environment, 2015, 156:157-168 doi: 10.1016/j.rse.2014.09.020
    [4]
    Zhou Q, Tian L, Wai O W H, et al. Impacts of Insufficient Observations on the Monitoring of Short- and Long-Term Suspended Solids Variations in Highly Dynamic Waters, and Implications for an Optimal Observation Strategy[J]. Remote Sensing, 2018, 10(2):345-354 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000195354
    [5]
    Cao Z, Duan H, Feng L, et al. Climate- and Human-Induced Changes in Suspended Particulate Matter over Lake Hongze on Short and Long Timescales[J]. Remote Sensing of Environment, 2017, 192:98-113 doi: 10.1016/j.rse.2017.02.007
    [6]
    Chen Z, Hu C, Muller-Karger F. Monitoring Turbidity in Tampa Bay Using MODIS/Aqua 250-m Imagery[J]. Remote Sensing of Environment, 2007, 109(2):207-220 doi: 10.1016/j.rse.2006.12.019
    [7]
    Zhou Q, Li J, Tian L, et al. Coupled Approach for Radiometric Calibration and Parameter Retrieval to Improve Water Quality Estimations in Turbid Inland/Coastal Waters[J]. Optics Express, 2020, 28(4):5567-5586 doi: 10.1364/OE.384035
    [8]
    Luo Q, Zhang X, Li Z, et al. The Effects of China's Ecological Control Line Policy on Ecosystem Services:The Case of Wuhan City[J]. Ecological Indicators, 2018, 93:292-301 doi: 10.1016/j.ecolind.2018.05.009
    [9]
    Huang X, Wang Y. Investigating the Effects of 3D Urban Morphology on the Surface Urban Heat Island Effect in Urban Functional Zones by Using High-Resolution Remote Sensing Data:A Case Study of Wuhan, Central China[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:119-131 doi: 10.1016/j.isprsjprs.2019.04.010
    [10]
    Du N, Ottens H, Sliuzas R. Spatial Impact of Urban Expansion on Surface Water Bodies-A Case Study of Wuhan, China[J]. Landscape and Urban Planning, 2010, 94(3):175-185 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd1bcf9e4c6f03d369b8a5935176c8a1
    [11]
    Matsuzaki K, Murase O, Sugishita K, et al. Optical Characterization of Liposomes by Right Angle Light Scattering and Turbidity Measurement[J].Biochimica et Biophysica Acta Biomembranes, 2000, 1467(1):219-226 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d824141e7856702dd3de610b11373b7
    [12]
    Wang M, Shi W. The NIR-SWIR Combined Atmospheric Correction Approach for MODIS Ocean Color Data Processing[J]. Optics Express, 2007, 15(24):15722-15733 doi: 10.1364/OE.15.015722
    [13]
    Tong C, Mu B, Liu R J, et al. Atmospheric Correction Algorithm for HY-1C CZI over Turbid Waters[J]. Journal of Coastal Research, 2019, 90(sp1):156-164 doi: 10.2112/SI90-019.1
    [14]
    Robert E, Grippa M, Kergoat L, et al. Monitoring Water Turbidity and Surface Suspended Sediment Concentration of the Bagre Reservoir (Burkina Faso) Using MODIS and Field Reflectance Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52:243-251 doi: 10.1016/j.jag.2016.06.016
    [15]
    Espinoza Villar R, Martinez J M, Le Texier M, et al. A Study of Sediment Transport in the Madeira River, Brazil, Using MODIS Remote-Sensing Images[J]. Journal of South American Earth Sciences, 2013, 44:45-54 doi: 10.1016/j.jsames.2012.11.006
    [16]
    Wong T T. Performance Evaluation of Classification Algorithms by k-Fold and Leave-One-Out Cross Validation[J]. Pattern Recognition, 2015, 48(9):2839-2846 doi: 10.1016/j.patcog.2015.03.009
  • Related Articles

    [1]WANG Mengqi, LI Bozhao, WANG Zhenli, LIU Songcao, LIAO Cheng, CAI Zhongliang. An Automatic Cartography Framework Integrating Knowledge Graph and Large Language Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240266
    [2]ZHU Jun, LAI Jianbo, XIE Yakun, CHEN Peijing, SUN Wenjin. Knowledge-Guided Spatiotemporal Narrative 3D Visualization Method for the Bridge Construction Process[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1650-1660. DOI: 10.13203/j.whugis20230239
    [3]WU Jianhua, WEI Ning, ZHANG Yongsheng, ZHANG Yufei, CHEN Yuanyuan, TU Haowen, QIN Kun, LIN Hui. Linguistic-Spatial Intelligence: Opportunities and Challenges of Interdisciplinary Innovation[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240351
    [4]ZHENG Yu. The Knowledge System for Intelligent Cities[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 1-16. DOI: 10.13203/j.whugis20220366
    [5]ZHU Jun, FU Lin, LI Weilian, ZHENG Quanhong, HU Ya, GUO Yukun, HUANG Pengcheng, YANG Li. Knowledge-Guided Dynamic Representation Method of Landslide Disaster Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1255-1262. DOI: 10.13203/j.whugis20200027
    [6]JIANG Jingchao, YU Jie, QIN Chengzhi, LIU Junzhi, LI Runkui, ZHU Liangjun, ZHU Axing. A Knowledge-driven Method for Intelligent Setting of Parameters in Hydrological Modeling[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 525-530. DOI: 10.13203/j.whugis20150044
    [7]ZHU Qing, MIAO Shuangxi, DING Yulin, QI Hua, HE Xiaobo, CAO Zhenyu. Knowledge-guided Gross Errors Detection and Elimination Approach of Landslide Monitoring Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 496-502. DOI: 10.13203/j.whugis20150125
    [8]ZHONG Heping, TIAN Zhen, WU Haoran, ZHANG Sen, TANG Jinsong. Parallel Quality-Guided Phase Unwrapping Algorithm in Shared Memory Environment[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 130-135. DOI: 10.13203/j.whugis20140728
    [9]ZHONG Heping, ZHANG Sen, TIAN Zhen, TANG Jinsong. A Fast Quality-guided Phase Unwrapping Algorithmin Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 756-760. DOI: 10.13203/j.whugis20130518
    [10]HE Yong, SHA Zongyao. Structure of Decision Support System Based on Intelligent Object[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 116-119.
  • Cited by

    Periodical cited type(9)

    1. 任加新,刘万增,陈军,张蓝,陶远,朱秀丽,赵婷婷,李然,翟曦,王海清,周晓光,侯东阳,王勇. 知识引导的碎片化栅格地形图比例尺智能识别. 测绘学报. 2024(01): 146-157 .
    2. 何光强,刘云刚. 总体国家安全观视角下的国家版图安全及其治理. 社会主义研究. 2024(01): 156-164+172 .
    3. 杜清运,况路路,任福,刘江涛,冯昶,陈卓宁,张浡聪,郑康,李智程. 自动驾驶高精度地图特征分析及发展展望. 地球信息科学学报. 2024(01): 15-24 .
    4. 李必军,郭圆,周剑,唐有辰,董全华,李治江. 智能驾驶高精地图发展与展望. 武汉大学学报(信息科学版). 2024(04): 491-505 .
    5. 吴佳桐,狄琳,黄龙. 智能驾驶高精地图数智化审查研究. 测绘通报. 2024(10): 174-178 .
    6. 陈军,王艳慧,武昊,刘万增. 时空信息赋能高质量发展的基本问题与发展方向. 时空信息学报. 2023(01): 1-11 .
    7. 纪银晓. 科技期刊编辑加工过程中常见的“问题地图”及预防措施. 出版与印刷. 2023(04): 97-103 .
    8. 谢富鑫,郭圆,周剑,郭思雨,李必军. 智能汽车高精地图众源更新研究现状. 人工智能. 2023(05): 48-54 .
    9. 蒋树芳,何书金,段宗奇,黄光玉. 一种基于“面-线-点”要素的期刊地图内容有序核查方法. 中国科技期刊研究. 2023(11): 1418-1426 .

    Other cited types(1)

Catalog

    Article views (2593) PDF downloads (161) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return