MA Yonggang, HUANG Yue, XIAO Zhengqing. Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 753-761. DOI: 10.13203/j.whugis20190469
Citation: MA Yonggang, HUANG Yue, XIAO Zhengqing. Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 753-761. DOI: 10.13203/j.whugis20190469

Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas

Funds: 

The National Natural Science Foundation of China 41761013

the Research Project of the Higher Education Institutions of the Xinjiang Uygur Autonomous Region of China XJEDU2017M007

the Natural Science Foundation of the Xinjiang Uygur Auton‍omous Region of China 2019D01C022

More Information
  • Author Bio:

    MA Yonggang, PhD, professor, specializes in remote sensing and phenology. E-mail: mayg@xju.edu.cn

  • Corresponding author:

    XIAO Zhengqing, PhD. E-mail: xiaozq@xju.edu.cn

  • Received Date: March 15, 2020
  • Published Date: May 04, 2022
  •   Objectives  Accurate measurement of vegetation phenology in high-altitude mountainous areas is critical in understanding the response of sensitive ecosystems to global climate change. The extraction and comparison of the phenological information using phenological cameras (PhenoCams) and remote sens‍ing technology can help evaluate the performance of PhenoCams in vegetation phenology extraction, which provides an important reference for the accuracy of remote sensing phenological data in mountainous areas.
      Methods  Firstly, the green chromatic coordinates (GCC) and normalization difference vegetation index (NDVI) of the vegetation are extracted for characterizing the profile of vegetation annual change based on the observed data from four PhenoCams stations and the remote sensing data in the Bayanbulak region of the Xinjiang Uygur Autonomous Region, China. Secondly, the denoising performance of seven filters for green index signals is comprehensively investigated. The phenological parameters extracted by 20 combinations of five curve fitting meth‍ods and four phenological parameter extraction methods are compared and analyzed.
      Results  (1) Vegetation PhenoCams can accurately provide high temporal resolution variation of GCC information of grasslands (including sparse vegetation types) in Tianshan mountainous areas, China, and they are effective means to observe mountain phenology and verify remote sensing phenology data. (2) Weather conditions such as rain and snow have a strong impact on GCC, and therefore it is necessary to select appropriate filters for denois‍ing. (3) ‍Curve fitting methods and phenological extraction methods have an important impact on the val‍ues of phenological parameters. Moreover, obvious differences exist between the extraction meth‍ods. The phenological values extracted by Threshold and Derivatives methods are similar, and the extraction start and stop peri‍ods can well match the artificially observed periods of rejuvenation and withering respectively. The phenological values extracted by the Klosterman method and Gu method are similar, which are consistent with the observations. (4)The effectiveness of 20 combinations in extract‍ing phenological information from remote sensing data in mountainous areas is only 48%. The most effective extraction method for moderate resolution imaging spectroradiometer (MODIS) data is the combination of Beck+Derivatives, and the best extraction methods for visible infrared imaging radiometer suite (VIIRS) data are the combination of Beck + Threshold and that of Elmore + Derivatives.
      Conclusions  PhenoCams data and remote sensing data have obvious differences in spatial and temporal scale, and the PhenoCams data provide a higher temporal resolution than the remote sensing data. Moreover, the PhenoCams data are less affected by weath‍er conditions, and thus the signal pollution caused by weather conditions can be reduced. Regulating the operational PhenoCams observation and expanding the spectral observation range of PhenoCams will improve the extraction of phenological information and help validate remote sensing phenological information. All of this certainly can help build a stable and long-term scientific data set for vegetation observations.
  • [1]
    Peñuelas J, Rutishauser T, Filella I E. Phenology Feedbacks on Climate Change[J]. Science, 2009, 324(5929): 887-888 doi: 10.1126/science.1173004
    [2]
    Richardson A D, Keenan T F, Migliavacca M, et al. Climate Change, Phenology, and Phenologcal Control of Vegetation Feedbacks to the Climate System[J]. Agricultural and Forest Meteorology, 2013, 169: 156-173 doi: 10.1016/j.agrformet.2012.09.012
    [3]
    Liu Q, Fu Y H, Zeng Z Z, et al. Temperature, Prcipitation, and Insolation Effects on Autumn Vegettion Phenology in Temperate China[J]. Global Change Biology, 2016, 22(2): 644-655 doi: 10.1111/gcb.13081
    [4]
    Shen M G, Tang Y H, Chen J, et al. Influences of Temperature and Precipitation Before the Growing Season on Spring Phenology in Grasslands of the Central and Eastern Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2011, 151 (12): 1711-1722 doi: 10.1016/j.agrformet.2011.07.003
    [5]
    Huxman T E, Snyder K A, Tissue D, et al. Precipittion Pulses and Carbon Fluxes in Semiarid and Arid Ecosystems[J]. Oecologia, 2004, 141(2): 254-268 doi: 10.1007/s00442-004-1682-4
    [6]
    Yao R, Wang L C, Huang X, et al. Investigation of Urbanization Effects on Land Surface Phenology in Northeast China During 2001-2015[J]. Remote Sensing, 2017, 9(1): 66 doi: 10.3390/rs9010066
    [7]
    Yao R, Wang L C, Huang X, et al. Increased Sptial Heterogeneity in Vegetation Greenness Due to Vegetation Greening in Mainland China[J]. Ecologcal Indicators, 2019, 99: 240-250 doi: 10.1016/j.ecolind.2018.12.039
    [8]
    Cory S T, Wood L K, Neufeld H S. Phenology and Growth Responses of Fraser Fir (Abies Fraseri) Christmas Trees Along an Elevational Gradient Southern Appalachian Mountains, USA[J]. Agrcultural and Forest Meteorology, 2017, 243: 25-32 doi: 10.1016/j.agrformet.2017.05.003
    [9]
    Cremonese E, Filippa G, Galvagno M, et al. Heat Wave Hinders Green Wave: The Impact of Climate Extreme on the Phenology of a Mountain Grassland [J]. Agricultural and Forest Meteorology, 2017, 247: 320-330 doi: 10.1016/j.agrformet.2017.08.016
    [10]
    Zhang X Y, Jayavelu S, Liu L L, et al. Evaluation of Land Surface Phenology from VⅡRS Data Using Time Series of PhenoCam Imagery[J]. Agricutural and Forest Meteorology, 2018, 256/257: 137-149 doi: 10.1016/j.agrformet.2018.03.003
    [11]
    Sonnentag O, Hufkens K, Teshera-Sterne C, et al. Digital Repeat Photography for Phenological Rsearch in Forest Ecosystems[J]. Agricultural and Forest Meteorology, 2012, 152: 159-177 doi: 10.1016/j.agrformet.2011.09.009
    [12]
    Migliavacca M, Galvagno M, Cremonese E, et al. Using Digital Repeat Photography and Eddy Cvariance Data to Model Grassland Phenology and Photosynthetic CO2 Uptake[J]. Agricultural and Forest Meteorology, 2011, 151(10): 1325-1337 doi: 10.1016/j.agrformet.2011.05.012
    [13]
    Papale D, Reichstein M, Aubinet M, et al. Twards a Standardized Processing of Net Ecosystem Exchange Measured with Eddy Covariance Tecnique: Algorithms and Uncertainty Estimation[J]. Biogeosciences, 2006, 3(4): 571-583 doi: 10.5194/bg-3-571-2006
    [14]
    Julitta T, Cremonese E, Migliavacca M, et al. Using Digital Camera Images to Analyse Snowmelt and Phenology of a Subalpine Grassland[J]. Agrcultural and Forest Meteorology, 2014, 198/199: 116-125 doi: 10.1016/j.agrformet.2014.08.007
    [15]
    Filippa G, Cremonese E, Migliavacca M, et al. Phenopix: A R Package for Image-Based Vegettion Phenology[J]. Agricultural and Forest Meterology, 2016, 220: 141-150 doi: 10.1016/j.agrformet.2016.01.006
    [16]
    McEwan R W, McCarthy B C. Phenology: An Itegrative Environmental Science[J]. The Journal of the Torrey Botanical Society, 2005, 132(1): 170-171 doi: 10.3159/1095-5674(2005)132[170:PAIES]2.0.CO;2
    [17]
    Beck P S A, Atzberger C, Høgda K A, et al. Iproved Monitoring of Vegetation Dynamics at very High Latitudes: A New Method Using MODIS ND- VI[J]. Remote Sensing of Environment, 2006, 100 (3): 321-334 doi: 10.1016/j.rse.2005.10.021
    [18]
    Gu L H, Post W M, Baldocchi D D, et al. Charaterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types [M]//Noormets A. Phenology of Ecosystem Prcesses. New York, USA: Springer, 2009
    [19]
    Elmore A J, Guinn S M, Minsley B J, et al. Lanscape Controls on the Timing of Spring, Autumn, and Growing Season Length in Mid-Atlantic Forests [J]. Global Change Biology, 2012, 18 (2): 656-674 doi: 10.1111/j.1365-2486.2011.02521.x
    [20]
    Klosterman S T, Hufkens K, Gray J M, et al. Evaluating Remote Sensing of Deciduous Forest Phenology at Multiple Spatial Scales Using PhenCam Imagery[J]. Biogeosciences, 2014, 11(16): 4305-4320 doi: 10.5194/bg-11-4305-2014
    [21]
    Jönsson P, Eklundh L. TIMESAT: A Program for Analyzing Time-Series of Satellite Sensor Data[J]. Computers & Geosciences, 2004, 30(8): 833-845
    [22]
    Zhang X Y, Friedl M A, Schaaf C B, et al. Montoring Vegetation Phenology Using MODIS[J]. Rmote Sensing of Environment, 2003, 84 (3): 471-475 doi: 10.1016/S0034-4257(02)00135-9
    [23]
    周玉科. 基于数码照片的植被物候提取多方法比较研究[J]. 地理科学进展, 2018, 37(8): 1031-1044 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201808003.htm

    Zhou Yuke. Comparative Study of Vegetation Phnology Extraction Methods Based on Digital Images [J]. Progress in Geography, 2018, 37(8): 1031- 1044 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201808003.htm
    [24]
    甘文霞, 沈焕锋, 张良培, 等. 采用6S模型的多时相MODIS植被指数NDVI归一化方法[J]. 武汉大学学报·信息科学版, 2014, 39(3): 300-304 doi: 10.13203/j.whugis20120731

    Gan Wenxia, Shen Huanfeng, Zhang Liangpei, et al. Normalization of Multi-temporal MODIS ND- VI Based on 6S Radiative Transfer Model[J]. Gematics and Information Science of Wuhan Universty, 2014, 39(3): 300-304 doi: 10.13203/j.whugis20120731
  • Related Articles

    [1]LIU Ju, BAO Jingyang, XU Jun. Water Correction Method Based on Temporal Variation of Tidal Time Difference[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 675-681, 689. DOI: 10.13203/j.whugis20170302
    [2]LI Pengcheng, XU Qing, XING Shuai, LIU Zhiqing, ZHANG Junjun. Weighted Curve Fitting Filtering Method Based on Full-Waveform LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 420-427. DOI: 10.13203/j.whugis20150377
    [3]MA Honglei, LIU Chenglong, SONG Tao, ZOU Bang, YANG Xuefeng. A New Fitting Method of Profile Circular Curve of Existing Railway[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1696-1700. DOI: 10.13203/j.whugis20140612
    [4]Jin Shaohua, Xiao Fumin, Bian Gang, Wang Mo, Sun Winchuan. A Method for Extracting Seabed Feature Parameters Based on the Angular Response Curve of Multibeam Backscatter Strength[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1493-1498.
    [5]JIANG Wan, SHEN Huanfeng, ZENG Chao, ZHANG Liangpei, ZHANG Hongyan, LIU Xinxin. Destriping Method for Band 28of Terra MODIS Images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 526-530. DOI: 10.13203/j.whugis20130006
    [6]YU Jie, MU Chao, FENG Yanming, DOU Yanjuan. Powerlines Extraction Techniques from Airborne LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1275-1279.
    [7]GUO Qingsheng, HUANG Yuanlin, ZHANG Liping. The Method of Curve Bend Recognition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 596-599.
    [8]LEI Weigang, TONG Xiaohua, LIU Dajie. Data Process Methods of Line Feature Generalization Based on Curve Fit[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 896-899.
    [9]ZHANG Mengjun, SHU Hong, LIU Yan, WANG Tao. An Adaptive Thresholding Approach Based on Spatial Curved Surface Fitting[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 395-398.
    [10]WANG Xinzhou, TANG Zhong'an, CHEN Zhihui. εm-Band Based on Spline Fitting Function of Anomalous Curves in GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 58-62.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (993) PDF downloads (86) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return