MA Yonggang, HUANG Yue, XIAO Zhengqing. Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 753-761. DOI: 10.13203/j.whugis20190469
Citation: MA Yonggang, HUANG Yue, XIAO Zhengqing. Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 753-761. DOI: 10.13203/j.whugis20190469

Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas

Funds: 

The National Natural Science Foundation of China 41761013

the Research Project of the Higher Education Institutions of the Xinjiang Uygur Autonomous Region of China XJEDU2017M007

the Natural Science Foundation of the Xinjiang Uygur Auton‍omous Region of China 2019D01C022

More Information
  • Author Bio:

    MA Yonggang, PhD, professor, specializes in remote sensing and phenology. E-mail: mayg@xju.edu.cn

  • Corresponding author:

    XIAO Zhengqing, PhD. E-mail: xiaozq@xju.edu.cn

  • Received Date: March 15, 2020
  • Published Date: May 04, 2022
  •   Objectives  Accurate measurement of vegetation phenology in high-altitude mountainous areas is critical in understanding the response of sensitive ecosystems to global climate change. The extraction and comparison of the phenological information using phenological cameras (PhenoCams) and remote sens‍ing technology can help evaluate the performance of PhenoCams in vegetation phenology extraction, which provides an important reference for the accuracy of remote sensing phenological data in mountainous areas.
      Methods  Firstly, the green chromatic coordinates (GCC) and normalization difference vegetation index (NDVI) of the vegetation are extracted for characterizing the profile of vegetation annual change based on the observed data from four PhenoCams stations and the remote sensing data in the Bayanbulak region of the Xinjiang Uygur Autonomous Region, China. Secondly, the denoising performance of seven filters for green index signals is comprehensively investigated. The phenological parameters extracted by 20 combinations of five curve fitting meth‍ods and four phenological parameter extraction methods are compared and analyzed.
      Results  (1) Vegetation PhenoCams can accurately provide high temporal resolution variation of GCC information of grasslands (including sparse vegetation types) in Tianshan mountainous areas, China, and they are effective means to observe mountain phenology and verify remote sensing phenology data. (2) Weather conditions such as rain and snow have a strong impact on GCC, and therefore it is necessary to select appropriate filters for denois‍ing. (3) ‍Curve fitting methods and phenological extraction methods have an important impact on the val‍ues of phenological parameters. Moreover, obvious differences exist between the extraction meth‍ods. The phenological values extracted by Threshold and Derivatives methods are similar, and the extraction start and stop peri‍ods can well match the artificially observed periods of rejuvenation and withering respectively. The phenological values extracted by the Klosterman method and Gu method are similar, which are consistent with the observations. (4)The effectiveness of 20 combinations in extract‍ing phenological information from remote sensing data in mountainous areas is only 48%. The most effective extraction method for moderate resolution imaging spectroradiometer (MODIS) data is the combination of Beck+Derivatives, and the best extraction methods for visible infrared imaging radiometer suite (VIIRS) data are the combination of Beck + Threshold and that of Elmore + Derivatives.
      Conclusions  PhenoCams data and remote sensing data have obvious differences in spatial and temporal scale, and the PhenoCams data provide a higher temporal resolution than the remote sensing data. Moreover, the PhenoCams data are less affected by weath‍er conditions, and thus the signal pollution caused by weather conditions can be reduced. Regulating the operational PhenoCams observation and expanding the spectral observation range of PhenoCams will improve the extraction of phenological information and help validate remote sensing phenological information. All of this certainly can help build a stable and long-term scientific data set for vegetation observations.
  • [1]
    Peñuelas J, Rutishauser T, Filella I E. Phenology Feedbacks on Climate Change[J]. Science, 2009, 324(5929): 887-888 doi: 10.1126/science.1173004
    [2]
    Richardson A D, Keenan T F, Migliavacca M, et al. Climate Change, Phenology, and Phenologcal Control of Vegetation Feedbacks to the Climate System[J]. Agricultural and Forest Meteorology, 2013, 169: 156-173 doi: 10.1016/j.agrformet.2012.09.012
    [3]
    Liu Q, Fu Y H, Zeng Z Z, et al. Temperature, Prcipitation, and Insolation Effects on Autumn Vegettion Phenology in Temperate China[J]. Global Change Biology, 2016, 22(2): 644-655 doi: 10.1111/gcb.13081
    [4]
    Shen M G, Tang Y H, Chen J, et al. Influences of Temperature and Precipitation Before the Growing Season on Spring Phenology in Grasslands of the Central and Eastern Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2011, 151 (12): 1711-1722 doi: 10.1016/j.agrformet.2011.07.003
    [5]
    Huxman T E, Snyder K A, Tissue D, et al. Precipittion Pulses and Carbon Fluxes in Semiarid and Arid Ecosystems[J]. Oecologia, 2004, 141(2): 254-268 doi: 10.1007/s00442-004-1682-4
    [6]
    Yao R, Wang L C, Huang X, et al. Investigation of Urbanization Effects on Land Surface Phenology in Northeast China During 2001-2015[J]. Remote Sensing, 2017, 9(1): 66 doi: 10.3390/rs9010066
    [7]
    Yao R, Wang L C, Huang X, et al. Increased Sptial Heterogeneity in Vegetation Greenness Due to Vegetation Greening in Mainland China[J]. Ecologcal Indicators, 2019, 99: 240-250 doi: 10.1016/j.ecolind.2018.12.039
    [8]
    Cory S T, Wood L K, Neufeld H S. Phenology and Growth Responses of Fraser Fir (Abies Fraseri) Christmas Trees Along an Elevational Gradient Southern Appalachian Mountains, USA[J]. Agrcultural and Forest Meteorology, 2017, 243: 25-32 doi: 10.1016/j.agrformet.2017.05.003
    [9]
    Cremonese E, Filippa G, Galvagno M, et al. Heat Wave Hinders Green Wave: The Impact of Climate Extreme on the Phenology of a Mountain Grassland [J]. Agricultural and Forest Meteorology, 2017, 247: 320-330 doi: 10.1016/j.agrformet.2017.08.016
    [10]
    Zhang X Y, Jayavelu S, Liu L L, et al. Evaluation of Land Surface Phenology from VⅡRS Data Using Time Series of PhenoCam Imagery[J]. Agricutural and Forest Meteorology, 2018, 256/257: 137-149 doi: 10.1016/j.agrformet.2018.03.003
    [11]
    Sonnentag O, Hufkens K, Teshera-Sterne C, et al. Digital Repeat Photography for Phenological Rsearch in Forest Ecosystems[J]. Agricultural and Forest Meteorology, 2012, 152: 159-177 doi: 10.1016/j.agrformet.2011.09.009
    [12]
    Migliavacca M, Galvagno M, Cremonese E, et al. Using Digital Repeat Photography and Eddy Cvariance Data to Model Grassland Phenology and Photosynthetic CO2 Uptake[J]. Agricultural and Forest Meteorology, 2011, 151(10): 1325-1337 doi: 10.1016/j.agrformet.2011.05.012
    [13]
    Papale D, Reichstein M, Aubinet M, et al. Twards a Standardized Processing of Net Ecosystem Exchange Measured with Eddy Covariance Tecnique: Algorithms and Uncertainty Estimation[J]. Biogeosciences, 2006, 3(4): 571-583 doi: 10.5194/bg-3-571-2006
    [14]
    Julitta T, Cremonese E, Migliavacca M, et al. Using Digital Camera Images to Analyse Snowmelt and Phenology of a Subalpine Grassland[J]. Agrcultural and Forest Meteorology, 2014, 198/199: 116-125 doi: 10.1016/j.agrformet.2014.08.007
    [15]
    Filippa G, Cremonese E, Migliavacca M, et al. Phenopix: A R Package for Image-Based Vegettion Phenology[J]. Agricultural and Forest Meterology, 2016, 220: 141-150 doi: 10.1016/j.agrformet.2016.01.006
    [16]
    McEwan R W, McCarthy B C. Phenology: An Itegrative Environmental Science[J]. The Journal of the Torrey Botanical Society, 2005, 132(1): 170-171 doi: 10.3159/1095-5674(2005)132[170:PAIES]2.0.CO;2
    [17]
    Beck P S A, Atzberger C, Høgda K A, et al. Iproved Monitoring of Vegetation Dynamics at very High Latitudes: A New Method Using MODIS ND- VI[J]. Remote Sensing of Environment, 2006, 100 (3): 321-334 doi: 10.1016/j.rse.2005.10.021
    [18]
    Gu L H, Post W M, Baldocchi D D, et al. Charaterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types [M]//Noormets A. Phenology of Ecosystem Prcesses. New York, USA: Springer, 2009
    [19]
    Elmore A J, Guinn S M, Minsley B J, et al. Lanscape Controls on the Timing of Spring, Autumn, and Growing Season Length in Mid-Atlantic Forests [J]. Global Change Biology, 2012, 18 (2): 656-674 doi: 10.1111/j.1365-2486.2011.02521.x
    [20]
    Klosterman S T, Hufkens K, Gray J M, et al. Evaluating Remote Sensing of Deciduous Forest Phenology at Multiple Spatial Scales Using PhenCam Imagery[J]. Biogeosciences, 2014, 11(16): 4305-4320 doi: 10.5194/bg-11-4305-2014
    [21]
    Jönsson P, Eklundh L. TIMESAT: A Program for Analyzing Time-Series of Satellite Sensor Data[J]. Computers & Geosciences, 2004, 30(8): 833-845
    [22]
    Zhang X Y, Friedl M A, Schaaf C B, et al. Montoring Vegetation Phenology Using MODIS[J]. Rmote Sensing of Environment, 2003, 84 (3): 471-475 doi: 10.1016/S0034-4257(02)00135-9
    [23]
    周玉科. 基于数码照片的植被物候提取多方法比较研究[J]. 地理科学进展, 2018, 37(8): 1031-1044 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201808003.htm

    Zhou Yuke. Comparative Study of Vegetation Phnology Extraction Methods Based on Digital Images [J]. Progress in Geography, 2018, 37(8): 1031- 1044 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201808003.htm
    [24]
    甘文霞, 沈焕锋, 张良培, 等. 采用6S模型的多时相MODIS植被指数NDVI归一化方法[J]. 武汉大学学报·信息科学版, 2014, 39(3): 300-304 doi: 10.13203/j.whugis20120731

    Gan Wenxia, Shen Huanfeng, Zhang Liangpei, et al. Normalization of Multi-temporal MODIS ND- VI Based on 6S Radiative Transfer Model[J]. Gematics and Information Science of Wuhan Universty, 2014, 39(3): 300-304 doi: 10.13203/j.whugis20120731
  • Related Articles

    [1]WEI Erhu, LIU Xuexi, WANG Lingxuan, LIU Jingnan. Analysis and Assessment of BDS/GPS Combined Precise Point Positioning Accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1654-1660. DOI: 10.13203/j.whugis20160568
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]ZHANG Rui, YANG Yuanxi, ZHANG Qin, HUANG Guanwen, WANG Le, YAN Xingyuan, QU Wei. Contribution Analysis of BDS/GPS Combined Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 600-608. DOI: 10.13203/j.whugis20150081
    [4]SUI Xin, SHI Chuang, LI Min, XU Zongqiu, XU Aigong. Impact Analysis of GPS/BDS Combined Positioning on Ambiguity Search Region for Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1372-1378. DOI: 10.13203/j.whugis20150479
    [5]GAO Xiao, DAI Wujiao, LI Shijia. Interior Performance Test of High Precision GPS/BDS Compatible Receivers[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 795-799. DOI: 10.13203/j.whugis20130459
    [6]Dongmei, XU Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 621-624.
    [7]LI Yihe, SHEN Yunzhong. Impact of Temporal Correlation of GPS Observations on Baseline Solution[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 427-430.
    [8]XIONG Yongliang, HUANG Dingfa, XU Shaoguang, LIAO Hua. Long Distance Kinematic GPS Data Processing and Kinematic Crustal Deformation Features Analysis of Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 265-269.
    [9]ZENG Xuping. GPS Data Processing of Landslide Vertical Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 201-204.
    [10]JIANG Weiping, LIU Jingnan, YE Shirong. The Systematical Error Analysis of Baseline Processing in GPS Network[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 196-199,238.
  • Cited by

    Periodical cited type(8)

    1. 翟高鹏,李文彬,薛新春,何杰. 空间直角坐标分量中误差转换到相邻点基线分量中误差的算法设计与实现. 测绘与空间地理信息. 2024(02): 204-206+210 .
    2. 张亮亮,李亚泽,熊磊,杨鹏飞,闵恒良. “北斗云”——电力时空大数据云平台技术与应用研究. 西部资源. 2023(02): 189-192 .
    3. 伏明星,李仲勤,张瑞鹏. 宝兰高铁某标段CPI复测数据处理与稳定性分析. 测绘地理信息. 2021(06): 40-45 .
    4. 刘洋洋,党亚民,许长辉. 基于GAMIT对国家GNSS基准站进行的北斗基线解算分析. 测绘工程. 2019(03): 25-29 .
    5. 张波. 北斗卫星导航系统用于高精度工程控制网建立的可行性分析. 北京测绘. 2019(07): 792-796 .
    6. 白正伟,张勤,黄观文,景策,王家兴. “轻终端+行业云”的实时北斗滑坡监测技术. 测绘学报. 2019(11): 1424-1429 .
    7. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(07): 49-50 .
    8. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(14): 49-50 .

    Other cited types(1)

Catalog

    Article views (993) PDF downloads (86) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return