HUANG Bohua, LI Xirui, XIAO Changfu, HE Ruofeng, HAN Chongyan, GUO Zhiliang. A CNN-Based Type Recognition Method for Outliers of BDS Satellite Clock Bias[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 947-956. DOI: 10.13203/j.whugis20190422
Citation: HUANG Bohua, LI Xirui, XIAO Changfu, HE Ruofeng, HAN Chongyan, GUO Zhiliang. A CNN-Based Type Recognition Method for Outliers of BDS Satellite Clock Bias[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 947-956. DOI: 10.13203/j.whugis20190422

A CNN-Based Type Recognition Method for Outliers of BDS Satellite Clock Bias

Funds: 

The National Natural Science Foundation of China U1731130

More Information
  • Author Bio:

    HUANG Bohua, master, engineer, specializes in satellite clock data processing. E-mail: 15799034054@163.com

  • Corresponding author:

    LI Xirui, master, senior engineer. E-mail: xrli@shao.ac.cn

  • Received Date: November 13, 2019
  • Published Date: June 04, 2021
  •   Objectives  There are many different types of outliers in the satellite clock bias of BeiDou satellite navigation system(BDS), and these outliers directly affect the prediction quality of clock bias and the reliability of performance analysis. The preprocessing of clock bias is the precondition for the prediction and analysis of clock bias, and the recognition of outliers is the key to the preprocessing.
      Methods  This paper proposes a convolutional neural network(CNN)-based recognition method for outliers of BDS satellite clock bias. Firstly, a strategy is proposed to identify outliers by graphical feature differences of clock bias. Based on the principle of image recognition, outliers with different graphic features are classified to make the judgment of outliers more consistent with human cognitive habits. Then, a CNN-based recognition method for BDS clock bias is designed. Finally, by optimizing the model parameters, the accuracy of model recognition is improved continuously.
      Results  By using the BDS satellite clock data publicly provided by the International GNSS Service (IGS) data center, a training set and two test sets containing both phase data and frequency data are made. Under the same experimental conditions, the accuracy of phase model and frequency model in these two test sets are more than 99.6%.
      Conclusions  The proposed method can accurately identify the types of outliers and improve the quality of the pretreatment of clock bias.
  • [1]
    郭海荣. 导航卫星原子钟时频特性分析理论与方法研究[D]. 郑州: 信息工程大学, 2006

    Guo Hairong. Study on the Analysis Theories and Algorithms of the Time and Frequency Characterization for Atomic Clocks of Navigation Satellites[D]. Zhengzhou: Information Engineering University, 2006
    [2]
    黄观文. GNSS星载原子钟质量评价及精密钟差算法研究[D]. 西安: 长安大学, 2012

    Huang Guanwen. Research on Algorithms of Precise Clock Offset and Quality Evaluation of GNSS Satellite Clock[D]. Xi'an: Chang'an University, 2012
    [3]
    王宁. BDS星载原子钟钟差数据预处理与钟性能分析研究[D]. 郑州: 信息工程大学, 2017

    Wang Ning. Study on the Methods of Clock Bias Data Preprocessing and Performance Analysis for On-Board Atomic Clocks of BDS[D]. Zhengzhou: Information Engineering University, 2017
    [4]
    张倩倩, 韩松辉, 杜兰, 等. 星地时间同步钟差异常处理的Bayesian方法[J]. 武汉大学学报·信息科学版, 2016, 41(6): 772-777 doi: 10.13203/j.whugis20140666

    Zhang Qianqian, Han Songhui, Du Lan, et al. Bayesian Methods for Outliers Detection and Estimation in Clock Offset Measurements of Satellite-Ground Time Transfer[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 772-777 doi: 10.13203/j.whugis20140666
    [5]
    郑作亚, 党亚民, 卢秀山, 等. 附有周期项的预报模型及其在GPS卫星钟差预报中的应用研究[J]. 天文学报, 2010, 51(1): 95-102 https://www.cnki.com.cn/Article/CJFDTOTAL-TWXB201001012.htm

    Zheng Zuoya, Dang Yamin, Lu Xiushan, et al. Prediction Model with Periodic Item and Its Application to the Prediction of GPS Satellite Clock Bias[J]. Acta Astronomica Sinica, 2010, 51(1): 95-102 https://www.cnki.com.cn/Article/CJFDTOTAL-TWXB201001012.htm
    [6]
    Heo Y J, Cho J, Heo M B. Improving Prediction Accuracy of GPS Satellite Clocks with Periodic Variation Behaviour[J]. Measurement Science and Technology, 2010, 21(7): 073001 doi: 10.1088/0957-0233/21/7/073001
    [7]
    雷雨, 赵丹宁. 基于经验模式分解和最小二乘支持向量机的卫星钟差预报[J]. 天文学报, 2014, 55(3): 216-227 https://www.cnki.com.cn/Article/CJFDTOTAL-TWXB201403004.htm

    Lei Yu, Zhao Danning. The Satellite Clock Bias Forecast Based on Empirical Mode Decomposition and Least Squares Support Vector Machines[J]. Acta Astronomica Sinica, 2014, 55(3): 216-227 https://www.cnki.com.cn/Article/CJFDTOTAL-TWXB201403004.htm
    [8]
    王宇谱, 吕志平, 陈正生, 等. 一种新的钟差预处理方法及在WNN钟差中长期预报中的应用[J]. 武汉大学学报·信息科学版, 2016, 41(3): 373-379 doi: 10.13203/j.whugis20140216

    Wang Yupu, Lü Zhiping, Chen Zhengsheng, et al. A New Data Preprocessing Method for Satellite Clock Bias and Its Application in WNN to Predict Medium-Term and Long-Term Clock Bias[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 373-379 doi: 10.13203/j.whugis20140216
    [9]
    Riley W J. Handbook of Frequency Stability Analysis[M].Gaithersburg, MD: National Institute of Standards and Technology, 2007
    [10]
    杨剑, 王泽民, 王贵文, 等. GPS接收机钟跳的研究[J]. 大地测量与地球动力学, 2007, 27(3): 123-127 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200703025.htm

    Yang Jian, Wang Zemin, Wang Guiwen, et al. On Clock Jumps of GPS Receiver[J]. Journal of Geodesy and Geodynamics, 2007, 27(3): 123-127 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200703025.htm
    [11]
    牛飞, 韩春好, 张义生, 等. 导航卫星星载原子钟异常监测分析[J]. 武汉大学学报·信息科学版, 2009, 34(5): 585-588 http://ch.whu.edu.cn/article/id/1261

    Niu Fei, Han Chunhao, Zhang Yisheng, et al. Analysis and Detection on Atomic Clock Anomaly of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 585-588 http://ch.whu.edu.cn/article/id/1261
    [12]
    黄新明, 龚航, 朱祥维, 等. 基于Kalman滤波器的卫星钟实时异常监测算法[J]. 宇航计测技术, 2011, 31(5): 6-11 doi: 10.3969/j.issn.1000-7202.2011.05.002

    Huang Xinming, Gong Hang, Zhu Xiangwei, et al. A Real-Time Anomaly Monitoring Algorithm for Satellite Clock Based on Kalman Filter[J]. Journal of Astronautic Metrology and Measurement, 2011, 31(5): 6-11 doi: 10.3969/j.issn.1000-7202.2011.05.002
    [13]
    冯遂亮. 原子钟数据预处理与钟性能分析方法研究[D]. 郑州: 信息工程大学, 2009

    Feng Suiliang. Study on the Methods of Data Preprocessing and Performance Analysis for Atomic Clocks[D]. Zhengzhou: Information Engineering University, 2009
    [14]
    Zhang G C, Gui Q M, Han S H, et al. A Bayesian Method of GNSS Cycle Slips Detection Based on ARMA Model[C]//2017 Forum on Cooperative Positioning and Service (CPGPS), Harbin, China, 2017
    [15]
    李斌, 杨富春, 江峻毅. 星载原子钟数据预处理的方法研究[J]. 宇航计测技术, 2015, 35(1): 44-48 doi: 10.3969/j.issn.1000-7202.2015.01.009

    Li Bin, Yang Fuchun, Jiang Junyi. Research on the Methods of Preprocessing the Satellite-Borne Atomic Clocks Data[J]. Journal of Astronautic Metrology and Measurement, 2015, 35(1): 44-48 doi: 10.3969/j.issn.1000-7202.2015.01.009
    [16]
    李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2 508-2 515 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201609029.htm

    Li Yandong, Hao Zongbo, Lei Hang. Survey of Convolutional Neural Network[J]. Journal of Computer Applications, 2016, 36(9): 2 508-2 515 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201609029.htm
    [17]
    Lecun Y, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2 278-2 324 doi: 10.1109/5.726791
    [18]
    Lawrence S, Giles C L, Tsoi A C, et al. Face Recognition: A Convolutional Neural-Network Approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113 doi: 10.1109/72.554195
    [19]
    Waibel A, Hanazawa T, Hinton G, et al. Phoneme Recognition Using Time-Delay Neural Networks[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(3): 328-339 doi: 10.1109/29.21701
    [20]
    Vaillant R, Monrocq C, Lecun Y. An Original Approach for the Localization of Objects in Images[J]. IEEE Proceedings-Vision, Image and Signal Processing, 1994, 141(4) : 245-250 doi: 10.1049/ip-vis:19941301
    [21]
    Sermanet P, Kavukcuoglu K, Chintala S, et al. Pedestrian Detection with Unsupervised Multi-Stage Feature Learning[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013
    [22]
    Ji S W, Xu W, Yang M, et al. 3D Convolutional Neural Networks for Human Action Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231 doi: 10.1109/TPAMI.2012.59
    [23]
    Karpathy A, Toderici G, Shetty S, et al. Large-Scale Video Classification with Convolutional Neural Networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014
    [24]
    Toshev A, Szegedy C. DeepPose: Human Pose Estimation via Deep Neural Networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014
    [25]
    Kalchbrenner N, Grefenstette E, Blunsom P. A Convolutional Neural Network for Modelling Sentences[EB/OL].
    [26]
    Kim Y. Convolutional Neural Networks for Sentence Classification[EB/OL].
    [27]
    Murphy K P. Machine Learning: A Probabilistic Perspective[M].Cambridge, MA: MIT Press, 2012
  • Related Articles

    [1]WANG Chunyan, LIU Jiaxin, XU Aigong, WANG Yu, SUI Xin. A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 922-929. DOI: 10.13203/j.whugis20150726
    [2]ZHENG Zhaobao, PAN Li, ZHENG Hong. Application of Image Correlation Degree to Image Fuzzy Classification[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 574-577. DOI: 10.13203/j.whugis20140736
    [3]ZHENG Zhaobao, PAN Li, ZHENG Hong. Image Segmentation Based on Fuzzy Logic Methods[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 397-400. DOI: 10.13203/j.whugis20120209
    [4]XU Lamei, YI Chunju. Application of Grey System Theory in Image Edge Detection[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 929-931.
    [5]ZHONG Yanfei, ZHANG Liangpei, LI Pingxiang. Fuzzy Cluster Validation for Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 391-394.
    [6]HU Peng, FU Zhongliang, CHEN Nan. Image Edge Detection Based on Gray System Theory[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 411-414.
    [7]HE Jianhua, LIU Yaolin. Formalized Description of Indeterminate Geographic Object Based on Fuzzy Degree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4): 341-344.
    [8]ZHANG Huimin, HAN Liqun, DUAN Zhenggang. Tobacco Grading Based on Image Features[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3): 359-362.
    [9]Huang Guilan, Zheng Zhaobao. The Application of Fuzzy Asesmble Analysis in the Classification of Image Texture Based on Fractal Geometry[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 112-117.
    [10]Shen Bangxing. Fuzzy Comprehensive Evaluation of the Experimental Design for the Multi-target[J]. Geomatics and Information Science of Wuhan University, 1989, 14(1): 57-65.
  • Cited by

    Periodical cited type(1)

    1. 郑肇葆, 郑宏. 利用数据引力进行图像分类. 武汉大学学报(信息科学版). 2017(11): 1604-1607 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return